enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Krylov subspace - Wikipedia

    en.wikipedia.org/wiki/Krylov_subspace

    All algorithms that work this way are referred to as Krylov subspace methods; they are among the most successful methods currently available in numerical linear algebra. These methods can be used in situations where there is an algorithm to compute the matrix-vector multiplication without there being an explicit representation of A ...

  3. Controlled invariant subspace - Wikipedia

    en.wikipedia.org/wiki/Controlled_invariant_subspace

    A subspace V ⊂ R n is a controlled invariant subspace if and only if AV ⊂ V + Im B. If V is a controlled invariant subspace, then there exists a matrix K such that the input u(t) = Kx(t) keeps the state within V; this is a simple feedback control (Ghosh 1985, Thm 1.1).

  4. Linear subspace - Wikipedia

    en.wikipedia.org/wiki/Linear_subspace

    In mathematics, and more specifically in linear algebra, a linear subspace or vector subspace [1] [note 1] is a vector space that is a subset of some larger vector space. A linear subspace is usually simply called a subspace when the context serves to distinguish it from other types of subspaces .

  5. Linear code - Wikipedia

    en.wikipedia.org/wiki/Linear_code

    Codes in general are often denoted by the letter C, and a code of length n and of rank k (i.e., having n code words in its basis and k rows in its generating matrix) is generally referred to as an (n, k) code. Linear block codes are frequently denoted as [n, k, d] codes, where d refers to the code's minimum Hamming distance between any two code ...

  6. Invariant subspace - Wikipedia

    en.wikipedia.org/wiki/Invariant_subspace

    In mathematics, an invariant subspace of a linear mapping T : V → V i.e. from some vector space V to itself, is a subspace W of V that is preserved by T. More generally, an invariant subspace for a collection of linear mappings is a subspace preserved by each mapping individually.

  7. Subspace - Wikipedia

    en.wikipedia.org/wiki/Subspace

    Linear subspace, in linear algebra, a subset of a vector space that is closed under addition and scalar multiplication; Flat (geometry), a Euclidean subspace; Affine subspace, a geometric structure that generalizes the affine properties of a flat; Projective subspace, a geometric structure that generalizes a linear subspace of a vector space

  8. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    Kernel and image of a linear map L from V to W. The kernel of L is a linear subspace of the domain V. [3] [2] In the linear map :, two elements of V have the same image in W if and only if their difference lies in the kernel of L, that is, = () =.

  9. Function space - Wikipedia

    en.wikipedia.org/wiki/Function_space

    Let F be a field and let X be any set. The functions X → F can be given the structure of a vector space over F where the operations are defined pointwise, that is, for any f, g : X → F, any x in X, and any c in F, define (+) = + () = When the domain X has additional structure, one might consider instead the subset (or subspace) of all such functions which respect that structure.