Search results
Results from the WOW.Com Content Network
One solution of the nine dots puzzle. It is possible to mark off the nine dots in four lines. [13] To do so, one goes outside the confines of the square area defined by the nine dots themselves. The phrase thinking outside the box, used by management consultants in the 1970s and 1980s, is a restatement of the solution strategy. According to ...
The simplified equation is not entirely equivalent to the original. For when we substitute y = 0 and z = 0 in the last equation, both sides simplify to 0, so we get 0 = 0 , a mathematical truth. But the same substitution applied to the original equation results in x /6 + 0/0 = 1 , which is mathematically meaningless .
[3] [4] Expressions can be evaluated or simplified by replacing operations that appear in them with their result. For example, the expression 8 × 2 − 5 {\displaystyle 8\times 2-5} simplifies to 16 − 5 {\displaystyle 16-5} , and evaluates to 11. {\displaystyle 11.}
An example of using Newton–Raphson method to solve numerically the equation f(x) = 0. In mathematics, to solve an equation is to find its solutions, which are the values (numbers, functions, sets, etc.) that fulfill the condition stated by the equation, consisting generally of two expressions related by an equals sign.
An algebraic equation is an equation involving polynomials, for which algebraic expressions may be solutions. If you restrict your set of constants to be numbers, any algebraic expression can be called an arithmetic expression. However, algebraic expressions can be used on more abstract objects such as in Abstract algebra.
However, more insidious are missing solutions, which can occur when performing operations on expressions that are invalid for certain values of those expressions. For example, if we were solving the following equation, the correct solution is obtained by subtracting 4 {\displaystyle 4} from both sides, then dividing both sides by 2 ...
An example is the function that relates each real number x to its square x 2. The output of a function f corresponding to an input x is denoted by f(x) (read "f of x"). In this example, if the input is −3, then the output is 9, and we may write f(−3) = 9. The input variable(s) are sometimes referred to as the argument(s) of the function.
Note that even simple equations like = are solved using cross-multiplication, since the missing b term is implicitly equal to 1: =. Any equation containing fractions or rational expressions can be simplified by multiplying both sides by the least common denominator.