Search results
Results from the WOW.Com Content Network
The cardinality or "size" of a multiset is the sum of the multiplicities of all its elements. For example, in the multiset {a, a, b, b, b, c} the multiplicities of the members a, b, and c are respectively 2, 3, and 1, and therefore the cardinality of this multiset is 6.
HyperLogLog is an algorithm for the count-distinct problem, approximating the number of distinct elements in a multiset. [1] Calculating the exact cardinality of the distinct elements of a multiset requires an amount of memory proportional to the cardinality, which is impractical for very large data sets. Probabilistic cardinality estimators ...
Besides the cardinality, which describes the size of a set, ordered sets also form a subject of set theory. The axiom of choice guarantees that every set can be well-ordered, which means that a total order can be imposed on its elements such that every nonempty subset has a first element with respect to that order.
where is the multiset for which () =, and μ(S) = 1 if S is a set (i.e. a multiset without double elements) of even cardinality. μ(S) = −1 if S is a set (i.e. a multiset without double elements) of odd cardinality. μ(S) = 0 if S is a proper multiset (i.e. S has double elements).
In some cases a multiset in this counting sense may be generalized to allow negative values, as in Python. C++'s Standard Template Library implements both sorted and unsorted multisets. It provides the multiset class for the sorted multiset, as a kind of associative container, which implements this multiset using a self-balancing binary search ...
The variety of a sequence or multiset is the number of distinct symbols in it. ... Cardinality; Complexity; Degrees of freedom ... Design for a brain; the origin of ...
Equal-cardinality partition is a variant in which both parts should have an equal number of items, in addition to having an equal sum. This variant is NP-hard too. [5]: SP12 Proof. Given a standard Partition instance with some n numbers, construct an Equal-Cardinality-Partition instance by adding n zeros. Clearly, the new instance has an equal ...
Cardinality; Cartesian product; Class (set theory) Complement (set theory) Complete Boolean algebra; Continuum (set theory) Suslin's problem; Continuum hypothesis; Countable set; Descriptive set theory. Analytic set; Analytical hierarchy; Borel equivalence relation; Infinity-Borel set; Lightface analytic game; Perfect set property; Polish space ...