Search results
Results from the WOW.Com Content Network
The cardinality or "size" of a multiset is the sum of the multiplicities of all its elements. For example, in the multiset {a, a, b, b, b, c} the multiplicities of the members a, b, and c are respectively 2, 3, and 1, and therefore the cardinality of this multiset is 6.
The unsorted multiset is standard as of C++11; previously SGI's STL provides the hash_multiset class, which was copied and eventually standardized. For Java, third-party libraries provide multiset functionality: Apache Commons Collections provides the Bag and SortedBag interfaces, with implementing classes like HashBag and TreeBag.
The cardinality of a set A is defined as its equivalence class under equinumerosity. A representative set is designated for each equivalence class. The most common choice is the initial ordinal in that class .
Multiset; See also. List of set identities and relations – Equalities for combinations of sets; List of types of functions This page was last edited on 20 April ...
In set theory and related branches of mathematics, a family (or collection) can mean, depending upon the context, any of the following: set, indexed set, multiset, or class. A collection F {\displaystyle F} of subsets of a given set S {\displaystyle S} is called a family of subsets of S {\displaystyle S} , or a family of sets over S ...
Cardinality; Cartesian product; Class (set theory) Complement (set theory) Complete Boolean algebra; Continuum (set theory) Suslin's problem; Continuum hypothesis; Countable set; Descriptive set theory. Analytic set; Analytical hierarchy; Borel equivalence relation; Infinity-Borel set; Lightface analytic game; Perfect set property; Polish space ...
where is the multiset for which () =, and μ(S) = 1 if S is a set (i.e. a multiset without double elements) of even cardinality. μ(S) = −1 if S is a set (i.e. a multiset without double elements) of odd cardinality. μ(S) = 0 if S is a proper multiset (i.e. S has double elements).
HyperLogLog is an algorithm for the count-distinct problem, approximating the number of distinct elements in a multiset. [1] Calculating the exact cardinality of the distinct elements of a multiset requires an amount of memory proportional to the cardinality, which is impractical for very large data sets. Probabilistic cardinality estimators ...