enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Moment-generating function - Wikipedia

    en.wikipedia.org/wiki/Moment-generating_function

    However, a key problem with moment-generating functions is that moments and the moment-generating function may not exist, as the integrals need not converge absolutely. By contrast, the characteristic function or Fourier transform always exists (because it is the integral of a bounded function on a space of finite measure ), and for some ...

  3. Factorial moment generating function - Wikipedia

    en.wikipedia.org/wiki/Factorial_moment...

    The factorial moment generating function generates the factorial moments of the probability distribution. Provided M X {\displaystyle M_{X}} exists in a neighbourhood of t = 1, the n th factorial moment is given by [ 1 ]

  4. Chernoff bound - Wikipedia

    en.wikipedia.org/wiki/Chernoff_bound

    In probability theory, a Chernoff bound is an exponentially decreasing upper bound on the tail of a random variable based on its moment generating function.The minimum of all such exponential bounds forms the Chernoff or Chernoff-Cramér bound, which may decay faster than exponential (e.g. sub-Gaussian).

  5. Method of moments (statistics) - Wikipedia

    en.wikipedia.org/wiki/Method_of_moments_(statistics)

    In statistics, the method of moments is a method of estimation of population parameters.The same principle is used to derive higher moments like skewness and kurtosis.. It starts by expressing the population moments (i.e., the expected values of powers of the random variable under consideration) as functions of the parameters of interest.

  6. Cumulant - Wikipedia

    en.wikipedia.org/wiki/Cumulant

    So the cumulant generating function is the logarithm of the moment generating function = ⁡ (). The first cumulant is the expected value ; the second and third cumulants are respectively the second and third central moments (the second central moment is the variance ); but the higher cumulants are neither moments nor central moments, but ...

  7. Taylor expansions for the moments of functions of random ...

    en.wikipedia.org/wiki/Taylor_expansions_for_the...

    In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.

  8. Probability-generating function - Wikipedia

    en.wikipedia.org/.../Probability-generating_function

    Other generating functions of random variables include the moment-generating function, the characteristic function and the cumulant generating function. The probability generating function is also equivalent to the factorial moment generating function , which as E ⁡ [ z X ] {\displaystyle \operatorname {E} \left[z^{X}\right]} can also be ...

  9. Factorial moment - Wikipedia

    en.wikipedia.org/wiki/Factorial_moment

    In probability theory, the factorial moment is a mathematical quantity defined as the expectation or average of the falling factorial of a random variable.Factorial moments are useful for studying non-negative integer-valued random variables, [1] and arise in the use of probability-generating functions to derive the moments of discrete random variables.