enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Moment-generating function - Wikipedia

    en.wikipedia.org/wiki/Moment-generating_function

    As its name implies, the moment-generating function can be used to compute a distribution’s moments: the nth moment about 0 is the nth derivative of the moment-generating function, evaluated at 0. In addition to real-valued distributions (univariate distributions), moment-generating functions can be defined for vector- or matrix-valued random ...

  3. Moment (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Moment_(mathematics)

    In mathematics, the moments of a function are certain quantitative measures related to the shape of the function's graph.If the function represents mass density, then the zeroth moment is the total mass, the first moment (normalized by total mass) is the center of mass, and the second moment is the moment of inertia.

  4. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The moment generating function of a real random variable is the expected value of , as a function of the real parameter . For a normal distribution with density f {\textstyle f} , mean μ {\textstyle \mu } and variance σ 2 {\textstyle \sigma ^{2}} , the moment generating function exists and is equal to

  5. Cumulant - Wikipedia

    en.wikipedia.org/wiki/Cumulant

    So the cumulant generating function is the logarithm of the moment generating function = ⁡ (). The first cumulant is the expected value ; the second and third cumulants are respectively the second and third central moments (the second central moment is the variance ); but the higher cumulants are neither moments nor central moments, but ...

  6. Method of moments (statistics) - Wikipedia

    en.wikipedia.org/wiki/Method_of_moments_(statistics)

    In statistics, the method of moments is a method of estimation of population parameters.The same principle is used to derive higher moments like skewness and kurtosis. It starts by expressing the population moments (i.e., the expected values of powers of the random variable under consideration) as functions of the parameters of interest.

  7. Characteristic function (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_function...

    The characteristic function always exists when treated as a function of a real-valued argument, unlike the moment-generating function. There are relations between the behavior of the characteristic function of a distribution and properties of the distribution, such as the existence of moments and the existence of a density function.

  8. Central moment - Wikipedia

    en.wikipedia.org/wiki/Central_moment

    The nth moment about the mean (or nth central moment) of a real-valued random variable X is the quantity μ n := E[(X − E[X]) n], where E is the expectation operator.For a continuous univariate probability distribution with probability density function f(x), the nth moment about the mean μ is

  9. Geometric distribution - Wikipedia

    en.wikipedia.org/wiki/Geometric_distribution

    The moment generating function of the geometric distribution when defined over and respectively is [7] [6]: 114 = () = (), < ⁡ The moments for the number of failures before the first success are given by