Search results
Results from the WOW.Com Content Network
Scalar potentials play a prominent role in many areas of physics and engineering. The gravity potential is the scalar potential associated with the force of gravity per unit mass, or equivalently, the acceleration due to the field, as a function of position.
In advanced classical mechanics it is often useful, and in quantum mechanics frequently essential, to express Maxwell's equations in a potential formulation involving the electric potential (also called scalar potential) φ, and the magnetic potential (a vector potential) A. For example, the analysis of radio antennas makes full use of Maxwell ...
Magnetic scalar potential, ψ, is a quantity in classical electromagnetism analogous to electric potential. It is used to specify the magnetic H -field in cases when there are no free currents , in a manner analogous to using the electric potential to determine the electric field in electrostatics .
A scalar field is a tensor field of order zero, [3] and the term "scalar field" may be used to distinguish a function of this kind with a more general tensor field, density, or differential form. The scalar field of ((+)) oscillating as increases. Red represents positive values, purple represents negative values, and sky blue represents ...
The electric potential at any location, r, in a system of point charges is equal to the sum of the individual electric potentials due to every point charge in the system. This fact simplifies calculations significantly, because addition of potential (scalar) fields is much easier than addition of the electric (vector) fields.
An electromagnetic four-potential is a relativistic vector function from which the electromagnetic field can be derived. It combines both an electric scalar potential and a magnetic vector potential into a single four-vector .
Position vectors r and r′ used in the calculation. The starting point is Maxwell's equations in the potential formulation using the Lorenz gauge: =, = where φ(r, t) is the electric potential and A(r, t) is the magnetic vector potential, for an arbitrary source of charge density ρ(r, t) and current density J(r, t), and is the D'Alembert operator. [2]
Introducing the electric potential φ (a scalar potential) and the magnetic potential A (a vector potential) defined from the E and B fields by: =, =.. The four Maxwell's equations in a vacuum with charge ρ and current J sources reduce to two equations, Gauss's law for electricity is: + =, where here is the Laplacian applied on scalar functions, and the Ampère-Maxwell law is: (+) = where ...