enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Trace (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Trace_(linear_algebra)

    The trace of a Hermitian matrix is real, because the elements on the diagonal are real. The trace of a permutation matrix is the number of fixed points of the corresponding permutation, because the diagonal term a ii is 1 if the i th point is fixed and 0 otherwise. The trace of a projection matrix is the dimension of the target space.

  3. Field trace - Wikipedia

    en.wikipedia.org/wiki/Field_trace

    If L/K is separable then each root appears only once [2] (however this does not mean the coefficient above is one; for example if α is the identity element 1 of K then the trace is [L:K ] times 1). More particularly, if L/K is a Galois extension and α is in L, then the trace of α is the sum of all the Galois conjugates of α, [1] i.e.,

  4. Trace operator - Wikipedia

    en.wikipedia.org/wiki/Trace_operator

    The trace operator can be defined for functions in the Sobolev spaces , with <, see the section below for possible extensions of the trace to other spaces. Let Ω ⊂ R n {\textstyle \Omega \subset \mathbb {R} ^{n}} for n ∈ N {\textstyle n\in \mathbb {N} } be a bounded domain with Lipschitz boundary.

  5. Arthur–Selberg trace formula - Wikipedia

    en.wikipedia.org/wiki/Arthur–Selberg_trace_formula

    The simple trace formula (Flicker & Kazhdan 1988) is less general but easier to prove. The local trace formula is an analogue over local fields. Jacquet's relative trace formula is a generalization where one integrates the kernel function over non-diagonal subgroups.

  6. Partial trace - Wikipedia

    en.wikipedia.org/wiki/Partial_trace

    Whereas the trace is a scalar-valued function on operators, the partial trace is an operator-valued function. The partial trace has applications in quantum information and decoherence which is relevant for quantum measurement and thereby to the decoherent approaches to interpretations of quantum mechanics, including consistent histories and the ...

  7. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    In Matlab/GNU Octave a matrix A can be vectorized by A(:). GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well. In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions.

  8. Trace class - Wikipedia

    en.wikipedia.org/wiki/Trace_class

    In mathematics, specifically functional analysis, a trace-class operator is a linear operator for which a trace may be defined, such that the trace is a finite number independent of the choice of basis used to compute the trace. This trace of trace-class operators generalizes the trace of matrices studied in linear algebra.

  9. Trace inequality - Wikipedia

    en.wikipedia.org/wiki/Trace_inequality

    Given a function :, the associated trace function on is given by ⁡ = (), where has eigenvalues and stands for a trace of the operator. Convexity and monotonicity of the trace function [ edit ]