enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hemoglobin - Wikipedia

    en.wikipedia.org/wiki/Hemoglobin

    Hemoglobin in the blood carries oxygen from the respiratory organs (lungs or gills) to the other tissues of the body, where it releases the oxygen to enable aerobic respiration which powers an animal's metabolism. A healthy human has 12 to 20 grams of hemoglobin in every 100 mL of blood. Hemoglobin is a metalloprotein, a chromoprotein, and ...

  3. Allosteric regulation - Wikipedia

    en.wikipedia.org/wiki/Allosteric_regulation

    Allosteric regulation of an enzyme. In the fields of biochemistry and pharmacology an allosteric regulator (or allosteric modulator) is a substance that binds to a site on an enzyme or receptor distinct from the active site, resulting in a conformational change that alters the protein's activity, either enhancing or inhibiting its function.

  4. Allosteric enzyme - Wikipedia

    en.wikipedia.org/wiki/Allosteric_enzyme

    Hemoglobin, though not an enzyme, is the canonical example of an allosteric protein molecule - and one of the earliest to have its crystal structure solved (by Max Perutz). More recently, the E. coli enzyme aspartate carbamoyltransferase (ATCase) has become another good example of allosteric regulation.

  5. Hemoglobin A - Wikipedia

    en.wikipedia.org/wiki/Hemoglobin_A

    The structure of adult human hemoglobin. α and β subunits are shown in red and blue, and the iron-containing heme groups in green. From PDB: 1GZX Proteopedia Hemoglobin. Hemoglobin A (HbA), also known as adult hemoglobin, hemoglobin A1 or α 2 β 2, is the most common human hemoglobin tetramer, accounting for over 97% of the total red blood ...

  6. Cooperative binding - Wikipedia

    en.wikipedia.org/wiki/Cooperative_binding

    The first description of cooperative binding to a multi-site protein was developed by A.V. Hill. [4] Drawing on observations of oxygen binding to hemoglobin and the idea that cooperativity arose from the aggregation of hemoglobin molecules, each one binding one oxygen molecule, Hill suggested a phenomenological equation that has since been named after him:

  7. Hemoglobin D - Wikipedia

    en.wikipedia.org/wiki/Hemoglobin_D

    Hemoglobin D has the basic structure and composition of normal adult hemoglobin. It is a globular protein containing prosthetic (non-protein) group called heme. There are four individual peptide chains, namely two α- and two β-subunits, each made of 141 and 146 amino acid residues, respectively.

  8. Cooperativity - Wikipedia

    en.wikipedia.org/wiki/Cooperativity

    The sigmoidal shape of hemoglobin's oxygen-dissociation curve results from cooperative binding of oxygen to hemoglobin. An example of positive cooperativity is the binding of oxygen to hemoglobin. One oxygen molecule can bind to the ferrous iron of a heme molecule in each of the four chains of a hemoglobin molecule.

  9. Monod–Wyman–Changeux model - Wikipedia

    en.wikipedia.org/wiki/Monod–Wyman–Changeux_model

    The best example of a successful application of the model is the regulation of hemoglobin function. Extensions of the model have been proposed for lattices of proteins by various authors. [5] [6] [7] Edelstein argued that the MWC model gave a better account of the data for hemoglobin than the sequential model [3] could do. [8]