Search results
Results from the WOW.Com Content Network
This article describes the key differences between the variants of cancer cell migration, the role of epithelial-mesenchymal and related transitions, as well as the significance of different tumor factors and stromal molecules in tumor invasion. Morphological manifestations of the invasion patterns are characterized by a variety of tissue ...
Mesenchymal cells from the primitive streak participate also in the formation of many epithelial mesodermal organs, such as notochord as well as somites, through the reverse of EMT, i.e. mesenchymal–epithelial transition. Amphioxus forms an epithelial neural tube and dorsal notochord but does not have the EMT potential of the primitive streak ...
The first emergence of mesenchyme occurs during gastrulation from the epithelial–mesenchymal transition (EMT) process. This transition occurs through the loss of epithelial cadherin, tight junctions, and adherens junctions on the cell membranes of epithelial cells. [9]
Unlike epithelial cells – which are stationary and characterized by an apico-basal polarity with binding by a basal lamina, tight junctions, gap junctions, adherent junctions and expression of cell-cell adhesion markers such as E-cadherin, [4] mesenchymal cells do not make mature cell-cell contacts, can invade through the extracellular matrix, and express markers such as vimentin ...
The interaction between stromal cells and tumor cells is known to play a major role in cancer growth and progression. [1] In addition, by regulating local cytokine networks (e.g. M-CSF , [ 2 ] LIF [ 3 ] ), bone marrow stromal cells have been described to be involved in human hematopoiesis and inflammatory processes.
The tumor in the lung is then called metastatic breast cancer, not lung cancer. Metastasis is a key element in cancer staging systems such as the TNM staging system, where it represents the "M". In overall stage grouping, metastasis places a cancer in Stage IV. The possibilities of curative treatment are greatly reduced, or often entirely ...
Loss of E-cadherin reduces cellular cohesion, allowing cancer cells to detach from the primary tumor. This is a hallmark of epithelial-to-mesenchymal transition (EMT), during which cancer cells acquire mesenchymal traits, such as increased motility and invasiveness. [17] [18] Degradation of the Extracellular Matrix (ECM)
EpCAM may also play a role in epithelial mesenchymal transition (EMT) in tumors, although its exact effects are poorly understood. Its ability to suppress E-cadherin suggests that EpCAM would promote EMT and tumor metastasis, but its homotypic cell adhesion properties can counteract its ability to suppress E-cadherin. [23]