Search results
Results from the WOW.Com Content Network
Often the independent variable is time. Described as a function, a quantity undergoing exponential growth is an exponential function of time, that is, the variable representing time is the exponent (in contrast to other types of growth, such as quadratic growth). Exponential growth is the inverse of logarithmic growth.
The function curve can be derived from a Gompertz law of mortality, which states the rate of absolute mortality (decay) falls exponentially with current size. Mathematically, where = ′ () is the rate of growth; k is an arbitrary constant.
A quantity undergoing exponential decay. Larger decay constants make the quantity vanish much more rapidly. This plot shows decay for decay constant (λ) of 25, 5, 1, 1/5, and 1/25 for x from 0 to 5. A quantity is subject to exponential decay if it decreases at a rate proportional to its current value.
Biological exponential growth is the unrestricted growth of a population of organisms, occurring when resources in its habitat are unlimited. [1] Most commonly apparent in species that reproduce quickly and asexually , like bacteria , exponential growth is intuitive from the fact that each organism can divide and produce two copies of itself.
By now, it is a widely accepted view to analogize Malthusian growth in Ecology to Newton's First Law of uniform motion in physics. [8] Malthus wrote that all life forms, including humans, have a propensity to exponential population growth when resources are abundant but that actual growth is limited by available resources:
With a stretching exponent β between 0 and 1, the graph of log f versus t is characteristically stretched, hence the name of the function. The compressed exponential function (with β > 1 ) has less practical importance, with the notable exceptions of β = 2 , which gives the normal distribution , and of compressed exponential relaxation in ...
RGR is a concept relevant in cases where the increase in a state variable over time is proportional to the value of that state variable at the beginning of a time period. In terms of differential equations, if is the current size, and its growth rate, then relative growth rate is
The equivalent concept to doubling time for a material undergoing a constant negative relative growth rate or exponential decay is the half-life. The equivalent concept in base- e is e -folding . Graphs comparing doubling times and half lives of exponential growths (bold lines) and decay (faint lines), and their 70/ t and 72/ t approximations.