Search results
Results from the WOW.Com Content Network
The volume (V) and surface area (S) of a toroid are given by the following equations, where A is the area of the square section of side, and R is the radius of revolution. V = 2 π R A {\displaystyle V=2\pi RA}
The volume of this solid torus and the surface area of its torus are easily computed using Pappus's centroid theorem, giving: [4] = () =, = () =. These formulas are the same as for a cylinder of length 2π R and radius r , obtained from cutting the tube along the plane of a small circle, and unrolling it by straightening out (rectifying) the ...
The hydraulic diameter is the equivalent circular configuration with the same circumference as the wetted perimeter. The area of a circle of radius R is . Given the area of a non-circular object A, one can calculate its area-equivalent radius by setting = or, alternatively:
A portion of the curve x = 2 + cos(z) rotated around the z-axis A torus as a square revolved around an axis parallel to one of its diagonals.. A surface of revolution is a surface in Euclidean space created by rotating a curve (the generatrix) one full revolution around an axis of rotation (normally not intersecting the generatrix, except at its endpoints). [1]
For example, if a field is drawn on a 1/10,000 scale map, the actual field perimeter can be calculated multiplying the drawing perimeter by 10,000. The real area is 10,000 2 times the area of the shape on the map. Nevertheless, there is no relation between the area and the perimeter of an ordinary shape.
An example of a spherical cap in blue (and another in red) In geometry, a spherical cap or spherical dome is a portion of a sphere or of a ball cut off by a plane.It is also a spherical segment of one base, i.e., bounded by a single plane.
The circumference is 2 π r, and the area of a triangle is half the base times the height, yielding the area π r 2 for the disk. Prior to Archimedes, Hippocrates of Chios was the first to show that the area of a disk is proportional to the square of its diameter, as part of his quadrature of the lune of Hippocrates , [ 2 ] but did not identify ...
In this case the volume of the band is the volume of the whole sphere, which matches the formula given above. An early study of this problem was written by 17th-century Japanese mathematician Seki Kōwa. According to Smith & Mikami (1914), Seki called this solid an arc-ring, or in Japanese kokan or kokwan. [1]