Search results
Results from the WOW.Com Content Network
The set of all reflections in lines through the origin and rotations about the origin, together with the operation of composition of reflections and rotations, forms a group. The group has an identity: Rot(0). Every rotation Rot(φ) has an inverse Rot(−φ). Every reflection Ref(θ) is its own inverse. Composition has closure and is ...
A glide reflection is the composition of a reflection across a line and a translation parallel to the line. This footprint trail has glide-reflection symmetry. Applying the glide reflection maps each left footprint into a right footprint and vice versa.
Reflection. Reflections, or mirror isometries, denoted by F c,v, where c is a point in the plane and v is a unit vector in R 2.(F is for "flip".) have the effect of reflecting the point p in the line L that is perpendicular to v and that passes through c.
A drawing of a butterfly with bilateral symmetry, with left and right sides as mirror images of each other.. In geometry, an object has symmetry if there is an operation or transformation (such as translation, scaling, rotation or reflection) that maps the figure/object onto itself (i.e., the object has an invariance under the transform). [1]
In mathematics, a symmetry operation is a geometric transformation of an object that leaves the object looking the same after it has been carried out. For example, a 1 ⁄ 3 turn rotation of a regular triangle about its center, a reflection of a square across its diagonal, a translation of the Euclidean plane, or a point reflection of a sphere through its center are all symmetry operations.
A point reflection is an involution: applying it twice is the identity transformation. An object that is invariant under a point reflection is said to possess point symmetry (also called inversion symmetry or central symmetry). A point group including a point reflection among its symmetries is called centrosymmetric.
A plane rotation around a point followed by another rotation around a different point results in a total motion which is either a rotation (as in this picture), or a translation. A motion of a Euclidean space is the same as its isometry : it leaves the distance between any two points unchanged after the transformation.
With rotational symmetry of order two of the pattern on the tile we have p2 (more symmetry of the pattern on the tile does not change that, because of the arrangement of the tiles). The rectangle is a more convenient unit to consider as fundamental domain (or set of two of them) than a parallelogram consisting of part of a tile and part of ...