Search results
Results from the WOW.Com Content Network
The Brayton cycle, also known as the Joule cycle, is a thermodynamic cycle that describes the operation of certain heat engines that have air or some other gas as their working fluid. It is characterized by isentropic compression and expansion, and isobaric heat addition and rejection, though practical engines have adiabatic rather than ...
Incoming air may be heated up in the combustion chamber, in the heat exchanger, or the system may directly receive hot exhaust gas from an engine or some technological process. Been heated up in one of these ways, the gas expands in the turbine from pressure around the atmospheric to the subatmospheric one, after the turbine, created by the ...
Regenerative cooling is a method of cooling gases in which compressed gas is cooled by allowing it to expand and thereby take heat from the surroundings. The cooled expanded gas then passes through a heat exchanger where it cools the incoming compressed gas.
The basic operation of the gas turbine is a Brayton cycle with air as the working fluid: atmospheric air flows through the compressor that brings it to higher pressure; energy is then added by spraying fuel into the air and igniting it so that the combustion generates a high-temperature flow; this high-temperature pressurized gas enters a ...
One is the Joule or Brayton cycle which is a gas turbine cycle and the other is the Rankine cycle which is a steam turbine cycle. [5] The cycle 1-2-3-4-1 which is the gas turbine power plant cycle is the topping cycle. It depicts the heat and work transfer process taking place in the high temperature region.
Regenerative Rankine cycle. The regenerative Rankine cycle is so named because after emerging from the condenser (possibly as a subcooled liquid) the working fluid is heated by steam tapped from the hot portion of the cycle. On the diagram shown, the fluid at 2 is mixed with the fluid at 4 (both at the same pressure) to end up with the ...
The Ericsson cycle (and the similar Brayton cycle) receives renewed interest [6] today to extract power from the exhaust heat of gas (and producer gas) engines and solar concentrators. An important advantage of the Ericsson cycle over the widely known Stirling engine is often not recognized : the volume of the heat exchanger does not adversely ...
Regenerative cooling remains the predominant method for managing the thermal loads in thrust chambers. Typically the rocket fuel acts as a coolant as it enters the engine through passages at the nozzle exit. [5] It traverses the high-heat throat region and exits near the injector face.