Ad
related to: tensor properties of crystals in plants examples video for grade 8 kidsgenerationgenius.com has been visited by 10K+ users in the past month
- Teachers Try it Free
Get 30 days access for free.
No credit card or commitment needed
- Grades 6-8 Science Videos
Get instant access to hours of fun
standards-based 6-8 videos & more.
- K-8 Standards Alignment
Videos & lessons cover most
of the standards for every state
- Grades 3-5 Science Videos
Get instant access to hours of fun
standards-based 3-5 videos & more.
- Teachers Try it Free
Search results
Results from the WOW.Com Content Network
Crystal optics is the branch of optics that describes the behaviour of light in anisotropic media, that is, media (such as crystals) in which light behaves differently depending on which direction the light is propagating. The index of refraction depends on both composition and crystal structure and can be calculated using the Gladstone–Dale ...
For structure calculations, it is generally desirable to choose the smallest number of ions that can represent the structure. For example, NaCl is a bcc cubic structure. At a first guess, one might construct a cell of two interlocked cubes – 8 Na and 8 Cl – as one's unit cell. This will give the correct answer but is computationally wasteful.
In physics, tensor is an orientational order parameter that describes uniaxial and biaxial nematic liquid crystals and vanishes in the isotropic liquid phase. [1] The Q {\displaystyle \mathbf {Q} } tensor is a second-order, traceless, symmetric tensor and is defined by [ 2 ] [ 3 ] [ 4 ]
The tensors are classified according to their type (n, m), where n is the number of contravariant indices, m is the number of covariant indices, and n + m gives the total order of the tensor. For example, a bilinear form is the same thing as a (0, 2)-tensor; an inner product is an example of a (0, 2)-tensor, but not all (0, 2)-tensors are inner ...
In addition, physical properties are often controlled by crystalline defects. The understanding of crystal structures is an important prerequisite for understanding crystallographic defects. Most materials do not occur as a single crystal, but are poly-crystalline in nature (they exist as an aggregate of small crystals with different orientations).
Crystal systems that have space groups assigned to a common lattice system are combined into a crystal family. The seven crystal systems are triclinic, monoclinic, orthorhombic, tetragonal, trigonal, hexagonal, and cubic. Informally, two crystals are in the same crystal system if they have similar symmetries (though there are many exceptions).
Nye has introduced a set of tensor (so-called Nye's tensor) to calculate the geometrically necessary dislocation density. [4] For a three dimension dislocations in a crystal, considering a region where the effects of dislocations is averaged (i.e. the crystal is large enough). The dislocations can be determined by Burgers vectors.
Tensor descriptions of material properties can be used to determine the directional dependence of that property. For a monocrystalline material, anisotropy is associated with the crystal symmetry in the sense that more symmetric crystal types have fewer independent coefficients in the tensor description of a given property.
Ad
related to: tensor properties of crystals in plants examples video for grade 8 kidsgenerationgenius.com has been visited by 10K+ users in the past month