enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Del in cylindrical and spherical coordinates - Wikipedia

    en.wikipedia.org/wiki/Del_in_cylindrical_and...

    This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): . The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.

  3. Del - Wikipedia

    en.wikipedia.org/wiki/Del

    Del operator, represented by the nabla symbol. Del, or nabla, is an operator used in mathematics (particularly in vector calculus) as a vector differential operator, usually represented by the nabla symbol ∇. When applied to a function defined on a one-dimensional domain, it denotes the standard derivative of the function as defined in calculus.

  4. Polar coordinate system - Wikipedia

    en.wikipedia.org/wiki/Polar_coordinate_system

    Points in the polar coordinate system with pole O and polar axis L. In green, the point with radial coordinate 3 and angular coordinate 60 degrees or (3, 60°). In blue, the point (4, 210°). In mathematics, the polar coordinate system specifies a given point in a plane by using a distance and an angle as its two coordinates. These are

  5. Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Laplace_operator

    In mathematics, the Laplace operator or Laplacian is a differential operator given by the ... In polar coordinates, ... Del in cylindrical and spherical coordinates.

  6. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    In mathematics, a spherical coordinate system specifies a given point in three-dimensional space by using a distance and two angles as its three coordinates. These are the radial distance r along the line connecting the point to a fixed point called the origin; the polar angle θ between this radial line and a given polar axis; [a] and

  7. List of common coordinate transformations - Wikipedia

    en.wikipedia.org/wiki/List_of_common_coordinate...

    Let (x, y, z) be the standard Cartesian coordinates, and (ρ, θ, φ) the spherical coordinates, with θ the angle measured away from the +Z axis (as , see conventions in spherical coordinates). As φ has a range of 360° the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. θ has a range ...

  8. Divergence - Wikipedia

    en.wikipedia.org/wiki/Divergence

    Since this definition is coordinate-free, it shows that the divergence is the same in any coordinate system. However the above definition is not often used practically to calculate divergence; when the vector field is given in a coordinate system the coordinate definitions below are much simpler to use.

  9. Curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Curvilinear_coordinates

    By definition, if a particle with no forces acting on it has its position expressed in an inertial coordinate system, (x 1, x 2, x 3, t), then there it will have no acceleration (d 2 x j /dt 2 = 0). [15] In this context, a coordinate system can fail to be "inertial" either due to non-straight time axis or non-straight space axes (or both).