Search results
Results from the WOW.Com Content Network
Gilbert cloud chamber, assembled An alternative view of kit contents. The lab contained a cloud chamber allowing the viewer to watch alpha particles traveling at 12,000 miles per second (19,000,000 m/s), a spinthariscope showing the results of radioactive disintegration on a fluorescent screen, and an electroscope measuring the radioactivity of different substances in the set.
GCSE Bitesize was launched in January 1998, covering seven subjects. For each subject, a one- or two-hour long TV programme would be broadcast overnight in the BBC Learning Zone block, and supporting material was available in books and on the BBC website. At the time, only around 9% of UK households had access to the internet at home.
The prevailing model of atomic structure before Rutherford's experiments was devised by J. J. Thomson. [2]: 123 Thomson had discovered the electron through his work on cathode rays [3] and proposed that they existed within atoms, and an electric current is electrons hopping from one atom to an adjacent one in a series.
Radioactive decay is a random process at the level of single atoms. According to quantum theory, it is impossible to predict when a particular atom will decay, regardless of how long the atom has existed. [2] [3] [4] However, for a significant number of identical atoms, the overall decay rate can be expressed as a decay constant or as a half-life.
In a group of such atoms, if the number of atoms in the excited state is given by N 2, the rate at which stimulated emission occurs is given by = = where the proportionality constant B 21 is known as the Einstein B coefficient for that particular transition, and ρ(ν) is the radiation density of the incident field at frequency ν.
Neutron radiation is a form of ionizing radiation that presents as free neutrons.Typical phenomena are nuclear fission or nuclear fusion causing the release of free neutrons, which then react with nuclei of other atoms to form new nuclides—which, in turn, may trigger further neutron radiation.
Radiation chemistry is a subdivision of nuclear chemistry which studies the chemical effects of ionizing radiation on matter. This is quite different from radiochemistry , as no radioactivity needs to be present in the material which is being chemically changed by the radiation.
Within a galaxy such as the Milky Way, particles have a much higher concentration, with the density of matter in the interstellar medium (ISM) ranging from 10 5 to 10 9 atoms/m 3. [113] The Sun is believed to be inside the Local Bubble, so the density in the solar neighborhood is only about 10 3 atoms/m 3. [114]