enow.com Web Search

  1. Ad

    related to: isosceles triangle length formula area

Search results

  1. Results from the WOW.Com Content Network
  2. Isosceles triangle - Wikipedia

    en.wikipedia.org/wiki/Isosceles_triangle

    On the other hand, if the area and perimeter are fixed, this formula can be used to recover the base length, but not uniquely: there are in general two distinct isosceles triangles with given area and perimeter . When the isoperimetric inequality becomes an equality, there is only one such triangle, which is equilateral.

  3. Area of a triangle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_triangle

    The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula T = h 2 b {\displaystyle T={\frac {h}{2}}b} that avoids the usual procedure of doubling the area of the triangle and then halving it.

  4. List of second moments of area - Wikipedia

    en.wikipedia.org/wiki/List_of_second_moments_of_area

    Regular polygons; Description Figure Second moment of area Comment A filled regular (equiliteral) triangle with a side length of a = = [6] The result is valid for both a horizontal and a vertical axis through the centroid, and therefore is also valid for an axis with arbitrary direction that passes through the origin.

  5. Equilateral triangle - Wikipedia

    en.wikipedia.org/wiki/Equilateral_triangle

    The area of an equilateral triangle with edge length is =. The formula may be derived from the formula of an isosceles triangle by Pythagoras theorem: the altitude of a triangle is the square root of the difference of squares of a side and half of a base. [3]

  6. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    The area formula for a triangle can be proven by cutting two copies of the triangle into pieces and rearranging them into a rectangle. In the Euclidean plane, area is defined by comparison with a square of side length ⁠ ⁠, which has area 1. There are several ways to calculate the area of an arbitrary triangle.

  7. Special right triangle - Wikipedia

    en.wikipedia.org/wiki/Special_right_triangle

    Set square shaped as 45° - 45° - 90° triangle The side lengths of a 45° - 45° - 90° triangle 45° - 45° - 90° right triangle of hypotenuse length 1.. In plane geometry, dividing a square along its diagonal results in two isosceles right triangles, each with one right angle (90°, ⁠ π / 2 ⁠ radians) and two other congruent angles each measuring half of a right angle (45°, or ...

  8. Isosceles trapezoid - Wikipedia

    en.wikipedia.org/wiki/Isosceles_trapezoid

    Any non-self-crossing quadrilateral with exactly one axis of symmetry must be either an isosceles trapezoid or a kite. [5] However, if crossings are allowed, the set of symmetric quadrilaterals must be expanded to include also the crossed isosceles trapezoids, crossed quadrilaterals in which the crossed sides are of equal length and the other sides are parallel, and the antiparallelograms ...

  9. List of triangle inequalities - Wikipedia

    en.wikipedia.org/wiki/List_of_triangle_inequalities

    The parameters most commonly appearing in triangle inequalities are: the side lengths a, b, and c;; the semiperimeter s = (a + b + c) / 2 (half the perimeter p);; the angle measures A, B, and C of the angles of the vertices opposite the respective sides a, b, and c (with the vertices denoted with the same symbols as their angle measures);

  1. Ad

    related to: isosceles triangle length formula area