Search results
Results from the WOW.Com Content Network
For example, the degree is defined such that one turn is 360 degrees. Using metric prefixes, the turn can be divided in 100 centiturns or 1000 milliturns, with each milliturn corresponding to an angle of 0.36°, which can also be written as 21′ 36″. [16] [17] A protractor divided in centiturns is normally called a "percentage protractor".
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
A degree (in full, a degree of arc, arc degree, or arcdegree), usually denoted by ° (the degree symbol), is a measurement of a plane angle in which one full rotation is 360 degrees. [4] It is not an SI unit—the SI unit of angular measure is the radian—but it is mentioned in the SI brochure as an accepted unit. [5]
The solid angle subtended at the corner of a cube (an octant) or spanned by a spherical octant is π /2 sr, one-eight of the solid angle of a sphere. [ 1 ] Solid angles can also be measured in square degrees (1 sr = ( 180/ π ) 2 square degrees), in square arc-minutes and square arc-seconds , or in fractions of the sphere (1 sr = 1 / 4 π ...
provided the angle is measured in radians. Angles measured in degrees must first be converted to radians by multiplying them by / . These approximations have a wide range of uses in branches of physics and engineering, including mechanics, electromagnetism, optics, cartography, astronomy, and computer science.
The frame of a sextant is in the shape of a sector which is approximately 1 ⁄ 6 of a circle (60°), [3] hence its name (sextāns, sextantis is the Latin word for "one sixth"). "). Both smaller and larger instruments are (or were) in use: the octant, quintant (or pentant) and the (doubly reflecting) quadrant [4] span sectors of approximately 1 ⁄ 8 of a circle (45°), 1 ⁄ 5 of a circle (72 ...
If the third angle is not required to be a right angle, but is the angle that makes the three positive angles sum to 180° then the third angle will necessarily have a rational number for its half-angle tangent when the first two do (using angle addition and subtraction formulas for tangents) and the triangle can be scaled to a Heronian triangle.
The values of sine and cosine of 30 and 60 degrees are derived by analysis of the equilateral triangle. In an equilateral triangle, the 3 angles are equal and sum to 180°, therefore each corner angle is 60°. Bisecting one corner, the special right triangle with angles 30-60-90 is obtained.