Search results
Results from the WOW.Com Content Network
Gårding (1997) comments that although the ideas in the transformative book by Schwartz (1951) were not entirely new, it was Schwartz's broad attack and conviction that distributions would be useful almost everywhere in analysis that made the difference. A detailed history of the theory of distributions was given by Lützen (1982).
The uniform distribution or rectangular distribution on [a,b], where all points in a finite interval are equally likely, is a special case of the four-parameter Beta distribution. The Irwin–Hall distribution is the distribution of the sum of n independent random variables, each of which having the uniform distribution on [0,1].
This page lists articles related to probability theory.In particular, it lists many articles corresponding to specific probability distributions.Such articles are marked here by a code of the form (X:Y), which refers to number of random variables involved and the type of the distribution.
The modern mathematical theory of probability has its roots in attempts to analyze games of chance by Gerolamo Cardano in the sixteenth century, and by Pierre de Fermat and Blaise Pascal in the seventeenth century (for example the "problem of points"). [3] Christiaan Huygens published a book on the subject in 1657. [4]
Laurent-Moïse Schwartz (French: [lɔʁɑ̃ mɔiz ʃvaʁts]; 5 March 1915 – 4 July 2002) was a French mathematician.He pioneered the theory of distributions, which gives a well-defined meaning to objects such as the Dirac delta function.
Pages in category "Theory of probability distributions" The following 74 pages are in this category, out of 74 total. This list may not reflect recent changes .
This is a list of probability topics. It overlaps with the (alphabetical) list of statistical topics. There are also the outline of probability and catalog of articles in probability theory. For distributions, see List of probability distributions. For journals, see list of probability journals.
In probability theory, the probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density ...