Search results
Results from the WOW.Com Content Network
In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or , and the divergence theorem is the case of a volume in . [2] Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus.
An illustration of Stokes' theorem, with surface Σ, its boundary ∂Σ and the normal vector n.The direction of positive circulation of the bounding contour ∂Σ, and the direction n of positive flux through the surface Σ, are related by a right-hand-rule (i.e., the right hand the fingers circulate along ∂Σ and the thumb is directed along n).
In this notation, Stokes' theorem reads as = . In finite element analysis, the first stage is often the approximation of the domain of interest by a triangulation, T. For example, a curve would be approximated as a union of straight line segments; a surface would be approximated by a union of triangles, whose edges are straight line segments ...
The basic triangle on a unit sphere. Both vertices and angles at the vertices of a triangle are denoted by the same upper case letters A, B, and C. Sides are denoted by lower-case letters: a, b, and c. The sphere has a radius of 1, and so the side lengths and lower case angles are equivalent (see arc length).
Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.
In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, = = =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.
The Schiffler point of a triangle is the point of concurrence of the Euler lines of four triangles: the triangle in question, and the three triangles that each share two vertices with it and have its incenter as the other vertex. The Napoleon points and generalizations of them are points of concurrency. For example, the first Napoleon point is ...
Here, θ is the angle between the vectors V and dl. The circulation Γ of a vector field V around a closed curve C is the line integral: [3] [4] =. In a conservative vector field this integral evaluates to zero for every closed curve. That means that a line integral between any two points in the field is independent of the path taken.