Search results
Results from the WOW.Com Content Network
The chirality of a molecule that has a helical, propeller, or screw-shaped geometry is called helicity [5] or helical chirality. [6] [7] The screw axis or the D n, or C n principle symmetry axis is considered to be the axis of chirality. Some sources consider helical chirality to be a type of axial chirality, [7] and some do not.
Since the helicity of massive particles is frame-dependent, it might seem that the same particle would interact with the weak force according to one frame of reference, but not another. The resolution to this paradox is that the chirality operator is equivalent to helicity for massless fields only, for which helicity is not frame-dependent. By ...
The helicity of a particle is positive (" right-handed") if the direction of its spin is the same as the direction of its motion and negative ("left-handed") if opposite. Helicity is conserved. [1] That is, the helicity commutes with the Hamiltonian, and thus, in the absence of external forces, is time-invariant. It is also rotationally ...
A mnemonic is a memory aid used to improve long-term memory and make the process of consolidation easier. Many chemistry aspects, rules, names of compounds, sequences of elements, their reactivity, etc., can be easily and efficiently memorized with the help of mnemonics.
In theoretical particle physics, maximally helicity violating amplitudes (MHV) are amplitudes with massless external gauge bosons, where gauge bosons have a particular helicity and the other two have the opposite helicity. These amplitudes are called MHV amplitudes, because at tree level, they violate helicity conservation to the maximum extent ...
An example of a molecule that does not have a mirror plane or an inversion and yet would be considered achiral is 1,1-difluoro-2,2-dichlorocyclohexane (or 1,1-difluoro-3,3-dichlorocyclohexane). This may exist in many conformers (conformational isomers), but none of them has a mirror plane.
In organic chemistry, helicenes are ortho-condensed polycyclic aromatic compounds in which benzene rings or other aromatics are angularly annulated to give helically-shaped chiral molecules. [1] The chemistry of helicenes has attracted continuing attention because of their unique structural, spectral , and optical features.
Macroscopic examples of chirality are found in the plant kingdom, the animal kingdom and all other groups of organisms. A simple example is the coiling direction of any climber plant, which can grow to form either a left- or right-handed helix. In anatomy, chirality is found in the imperfect mirror image symmetry of many kinds of animal bodies.