Search results
Results from the WOW.Com Content Network
The axis of a cone is the straight line passing through the apex about which the cone has a circular symmetry. In common usage in elementary geometry, cones are assumed to be right circular, i.e., with a circle base perpendicular to the axis. [1] If the cone is right circular the intersection of a plane with the lateral surface is a conic section.
The cone over a closed interval I of the real line is a filled-in triangle (with one of the edges being I), otherwise known as a 2-simplex (see the final example). The cone over a polygon P is a pyramid with base P. The cone over a disk is the solid cone of classical geometry (hence the concept's name). The cone over a circle given by
In geometry, a net of a polyhedron is an arrangement of non-overlapping edge-joined polygons in the plane which can be folded (along edges) to become the faces of the polyhedron. Polyhedral nets are a useful aid to the study of polyhedra and solid geometry in general, as they allow for physical models of polyhedra to be constructed from ...
Apollonian gasket; Apollonian sphere packing; Blancmange curve; Cantor dust; Cantor set; Cantor tesseract [citation needed]; Circle inversion fractal; De Rham curve; Douady rabbit; Dragon curve
In geometry, a spherical sector, [1] also known as a spherical cone, [2] is a portion of a sphere or of a ball defined by a conical boundary with apex at the center of the sphere. It can be described as the union of a spherical cap and the cone formed by the center of the sphere and the base of the cap.
In geometry, a frustum (Latin for 'morsel'); [a] (pl.: frusta or frustums) is the portion of a solid (normally a pyramid or a cone) that lies between two parallel planes cutting the solid. In the case of a pyramid, the base faces are polygonal and the side faces are trapezoidal.
A net = is said to be frequently or cofinally in if for every there exists some such that and . [5] A point is said to be an accumulation point or cluster point of a net if for every neighborhood of , the net is frequently/cofinally in . [5] In fact, is a cluster point if and only if it has a subnet that converges to . [6] The set of all ...
What links here; Related changes; Upload file; Special pages; Permanent link; Page information; Cite this page; Get shortened URL; Download QR code