Search results
Results from the WOW.Com Content Network
Mutual inductance occurs when the change in current in one inductor induces a voltage in another nearby inductor. It is important as the mechanism by which transformers work, but it can also cause unwanted coupling between conductors in a circuit. The mutual inductance, , is also a measure of the coupling between two inductors.
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
An inductor is characterized by its inductance, which is the ratio of the voltage to the rate of change of current. In the International System of Units (SI), the unit of inductance is the henry (H) named for 19th century American scientist Joseph Henry. In the measurement of magnetic circuits, it is equivalent to weber / ampere .
k is the coupling coefficient, Le1 and Le2 is the leakage inductance, M1 (M2) is the mutual inductance. An inductively coupled transponder consists of a solid state transceiver chip connected to a large coil that functions as an antenna. When brought within the oscillating magnetic field of a reader unit, the transceiver is powered up by energy ...
where M is the mutual inductance of the circuits and L p and L s are the inductances of the primary and secondary circuits, respectively. If the flux lines of the primary inductor thread every line of the secondary one, then the coefficient of coupling is 1 and M = L p L s {\textstyle M={\sqrt {L_{p}L_{s}}}} In practice, however, there is of ...
This back-and-forth component of momentum contributes to magnetic inductance. The closer that q 1 and q 2 are, the greater the effect. When q 2 is inside a conductive medium such as a thick slab made of copper or aluminum, it more readily responds to the force applied to it by q 1 .
Leakage inductance derives from the electrical property of an imperfectly coupled transformer whereby each winding behaves as a self-inductance in series with the winding's respective ohmic resistance constant. These four winding constants also interact with the transformer's mutual inductance. The winding leakage inductance is due to leakage ...
Here , are the inductance and the capacitance of the first circuit, , are the inductance and the capacitance of the second circuit, and , are mutual inductance and mutual capacitance. Formulas (4) and (5) are known for a long time in theory of electrical networks. They represent values of inductive and capacitive coupling coefficients of the ...