Search results
Results from the WOW.Com Content Network
Double-stranded RNA viruses (Group III) contain from one to a dozen different RNA molecules, each coding for one or more viral proteins. Positive-sense ssRNA viruses (Group IV) have their genome directly utilized as mRNA, with host ribosomes translating it into a single protein that is modified by host and viral proteins to form the various ...
Genome type and replication cycle of different RNA viruses. RNA viruses in Orthornavirae typically do not encode many proteins, but most positive-sense, single-stranded (+ssRNA) viruses and some double-stranded RNA (dsRNA) viruses encode a major capsid protein that has a single jelly roll fold, so named because the folded structure of the protein contains a structure that resembles a jelly ...
Viral mRNA is translated by the host cell's ribosomes to produce viral proteins. In order to produce more viruses, viral RNA-dependent polymerases use copies of the viral genome as templates to replicate the viral genome. For +ssRNA viruses, an intermediate dsRNA genome is created from which +ssRNA is synthesized from the negative strand. [4]
Double-stranded RNA viruses (dsRNA viruses) are a polyphyletic group of viruses that have double-stranded genomes made of ribonucleic acid.The double-stranded genome is used as a template by the viral RNA-dependent RNA polymerase (RdRp) to transcribe a positive-strand RNA functioning as messenger RNA (mRNA) for the host cell's ribosomes, which translate it into viral proteins.
Baltimore classification groups viruses together based on their manner of mRNA synthesis. Characteristics directly related to this include whether the genome is made of deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), the strandedness of the genome, which can be either single- or double-stranded, and the sense of a single-stranded genome, which is either positive or negative.
Positive-strand RNA virus genomes usually contain relatively few genes, usually between three and ten, including an RNA-dependent RNA polymerase. [4] Coronaviruses have the largest known RNA genomes, between 27 and 32 kilobases in length, and likely possess replication proofreading mechanisms in the form of an exoribonuclease within nonstructural protein nsp14.
A normal mRNA starts and ends with sections that do not code for amino acids of the actual protein. These sequences at the 5′ and 3′ ends of an mRNA strand are called untranslated regions (UTRs). The two UTRs at their strand ends are essential for the stability of an mRNA and also of a modRNA as well as for the efficiency of translation, i ...
Poliovirus mRNA uses a cloverleaf section towards its 5' end to bind PCBP2, which binds poly(A)-binding protein, forming the familiar mRNA-protein-mRNA circle. Barley yellow dwarf virus has binding between mRNA segments on its 5' end and 3' end (called kissing stem loops), circularizing the mRNA without any proteins involved. RNA virus genomes ...