Search results
Results from the WOW.Com Content Network
Simplified control circuit of human thermoregulation. [8]The core temperature of a human is regulated and stabilized primarily by the hypothalamus, a region of the brain linking the endocrine system to the nervous system, [9] and more specifically by the anterior hypothalamic nucleus and the adjacent preoptic area regions of the hypothalamus.
Homeothermy, homothermy or homoiothermy [1] is thermoregulation that maintains a stable internal body temperature regardless of external influence. This internal body temperature is often, though not necessarily, higher than the immediate environment [ 2 ] (from Greek ὅμοιος homoios "similar" and θέρμη thermē "heat").
Room temperature, colloquially, denotes the range of air temperatures most people find comfortable indoors while dressed in typical clothing. Comfortable temperatures can be extended beyond this range depending on humidity , air circulation , and other factors.
The wetness of skin in different areas also affects perceived thermal comfort. Humidity can increase wetness in different areas of the body, leading to a perception of discomfort. This is usually localized in different parts of the body, and local thermal comfort limits for skin wetness differ by locations of the body. [32]
Other circumstances also affect the body's temperature. The core body temperature of an individual tends to have the lowest value in the second half of the sleep cycle; the lowest point, called the nadir, is one of the primary markers for circadian rhythms. The body temperature also changes when a person is hungry, sleepy, sick, or cold.
Thermoregulation is the ability of an organism to keep its body temperature within certain boundaries, even when the surrounding temperature is very different. A thermoconforming organism, by contrast, simply adopts the surrounding temperature as its own body temperature, thus avoiding the need for internal thermoregulation.
The effects of high altitude on humans are mostly the consequences of reduced partial pressure of oxygen in the atmosphere. The medical problems that are direct consequence of high altitude are caused by the low inspired partial pressure of oxygen, which is caused by the reduced atmospheric pressure, and the constant gas fraction of oxygen in ...
One explanation for the effect is a cold-induced malfunction of the hypothalamus, the part of the brain that regulates body temperature. Another explanation is that the muscles contracting peripheral blood vessels become exhausted (known as a loss of vasomotor tone ) and relax, leading to a sudden surge of blood (and heat) to the extremities ...