Search results
Results from the WOW.Com Content Network
Oocyte abnormalities can be caused by a variety of genetic factors affecting different stages in meiosis. [1] Moreover, ageing is associated with oocyte abnormalities since higher maternal age is associated with oocytes with a reduced gene expression of spindle assembly checkpoints which are important in maintaining stability in the genome.
Oogenesis starts with the process of developing primary oocytes, which occurs via the transformation of oogonia into primary [oocyte]s, a process called oocytogenesis. [11] From one single oogonium, only one mature oocyte will rise, with 3 other cells called polar bodies. Oocytogenesis is complete either before or shortly after birth.
The secondary oocyte continues the second stage of meiosis (meiosis II), and the daughter cells are one ootid and one polar body. Secondary oocytes are the immature ovum shortly after ovulation, to fertilization, where it turns into an ootid. Thus, the time as a secondary oocyte is measured in days.
Eventually, the oogonia will either degenerate or further differentiate into primary oocytes through asymmetric division. Asymmetric division is a process of mitosis in which one oogonium divides unequally to produce one daughter cell that will eventually become an oocyte through the process of oogenesis , and one daughter cell that is an ...
An oocyte (/ ˈ oʊ ə s aɪ t /, oöcyte, or ovocyte is a female gametocyte or germ cell involved in reproduction. In other words, it is an immature ovum, or egg cell. An oocyte is produced in a female fetus in the ovary during female gametogenesis. The female germ cells produce a primordial germ cell (PGC), which then undergoes mitosis ...
Stroma-like theca cells are recruited by oocyte-secreted signals. They surround the follicle's outermost layer, the basal lamina, and undergo cytodifferentiation to become the theca externa and theca interna. An intricate network of capillary vessels forms between these two thecal layers and begins to circulate blood to and from the follicle.
Mitotic germ stem cells, oogonia, divide by mitosis to produce primary oocytes committed to meiosis. Unlike sperm production, oocyte production is not continuous. These primary oocytes begin meiosis but pause in diplotene of meiosis I while in the embryo. All of the oogonia and many primary oocytes die before birth.
The development of gametogonia to primary gametocytes is called gametocytogenesis. The further development of primary gametocytes to secondary gametocytes is a part of gametidogenesis. Gametogenesis is the formation or production of gametes (taking place during meiosis). The development and maturation of sex cells also takes place during meiosis.