Search results
Results from the WOW.Com Content Network
The effect of dynamic stall limits the helicopter performance in several ways such as: The maximum forward flight velocity and thrust; High blade structural loads, which may result in excessive vibrations and blade structural damage; Control system loads, manoeuvre capability, and handling qualities; Helicopter dynamic performance.
Retreating blade stall is a hazardous flight condition in helicopters and other rotary wing aircraft, where the retreating rotor blade has a lower relative blade speed, combined with an increased angle of attack, causing a stall and loss of lift. Retreating blade stall is the primary limiting factor of a helicopter's never exceed speed, V NE. [1]
Helicopters with fly-by-wire systems allow a cyclic-style controller to be mounted to the side of the pilot seat. The cyclic is used to control the main rotor in order to change the helicopter's direction of movement. In a hover, the cyclic controls the movement of the helicopter forward, back, and laterally.
SEATTLE/LONDON, March 25 (Reuters) - A Boeing Co software fix for the grounded 737 MAX will prevent repeated operation of an anti-stall system at the centre of safety concerns and deactivate it ...
A helicopter's main rotor hub. The vertical rods are at the end of the control chain that starts with the pilot controls. Helicopter flight controls are connected to the main and tail rotors, and include a cyclic stick, broadly to control forward-aft and left-right movements, a collective lever, broadly to control vertical movements, and anti-torque pedals, to control left and right yaw.
WASHINGTON/SINGAPORE, Oct 11 (Reuters) - A panel of international air safety regulators on Friday harshly criticized the U.S. Federal Aviation Administration's (FAA) review of a safety system on ...
Dynamic rollover begins when the helicopter starts to pivot around its skid or wheel. This can occur for a variety of reasons, including the failure to remove a tiedown or skid securing device, or if the skid or wheel contacts a fixed object while hovering sideward, or if the gear is stuck in ice, soft asphalt, or mud.
Its comprises helicopter aerodynamics, stability, control, structural dynamics, vibration, and aeroelastic and aeromechanical stability. [1] By studying the forces in helicopter flight, improved helicopter designs can be made, though due to the scale and speed of the dynamics, physical testing is non-trivial and expensive.