Search results
Results from the WOW.Com Content Network
The PACELC theorem, introduced in 2010, [8] builds on CAP by stating that even in the absence of partitioning, there is another trade-off between latency and consistency. PACELC means, if partition (P) happens, the trade-off is between availability (A) and consistency (C); Else (E), the trade-off is between latency (L) and consistency (C).
In geometry, a spherical cap or spherical dome is a portion of a sphere or of a ball cut off by a plane. It is also a spherical segment of one base, i.e., bounded by a single plane. If the plane passes through the center of the sphere (forming a great circle), so that the height of the cap is equal to the radius of the sphere, the spherical cap ...
Pitot theorem (plane geometry) Pizza theorem ; Pivot theorem ; Planar separator theorem (graph theory) Plancherel theorem (Fourier analysis) Plancherel theorem for spherical functions (representation theory) Poincaré–Bendixson theorem (dynamical systems) Poincaré–Birkhoff–Witt theorem (universal enveloping algebras)
The CAP theorem is based on three trade-offs, one of which is "atomic consistency" (shortened to "consistency" for the acronym), about which the authors note, "Discussing atomic consistency is somewhat different than talking about an ACID database, as database consistency refers to transactions, while atomic consistency refers only to a property of a single request/response operation sequence.
Eventual consistency is a consistency model used in distributed computing to achieve high availability.Put simply: if no new updates are made to a given data item, eventually all accesses to that item will return the last updated value. [1]
In affine geometry, a cap set is a subset of the affine space (the -dimensional affine space over the three-element field) where no three elements sum to the zero vector. The cap set problem is the problem of finding the size of the largest possible cap set, as a function of n {\displaystyle n} . [ 1 ]
Lines, L. (1965), Solid geometry: With Chapters on Space-lattices, Sphere-packs and Crystals, Dover. Reprint of 1935 edition. A problem on page 101 describes the shape formed by a sphere with a cylinder removed as a "napkin ring" and asks for a proof that the volume is the same as that of a sphere with diameter equal to the length of the hole.
Given a linear operator T on a finite-dimensional vector space V, one can consider the vector space with operator as a module over the polynomial ring in one variable R = K[T], as in the structure theorem for finitely generated modules over a principal ideal domain.