Search results
Results from the WOW.Com Content Network
In geometry, a spherical cap or spherical dome is a portion of a sphere or of a ball cut off by a plane. It is also a spherical segment of one base, i.e., bounded by a single plane. If the plane passes through the center of the sphere (forming a great circle), so that the height of the cap is equal to the radius of the sphere, the spherical cap ...
The PACELC theorem, introduced in 2010, [8] builds on CAP by stating that even in the absence of partitioning, there is another trade-off between latency and consistency. PACELC means, if partition (P) happens, the trade-off is between availability (A) and consistency (C); Else (E), the trade-off is between latency (L) and consistency (C).
Meusnier's theorem (differential geometry) Midy's theorem (number theory) Mihăilescu's theorem (number theory) Milliken–Taylor theorem (Ramsey theory) Milliken's tree theorem (Ramsey theory) Milman–Pettis theorem (Banach space) Min-max theorem (functional analysis) Minimax theorem (game theory) Minkowski's theorem (geometry of numbers)
A cap, can be defined as the intersection of a half-space with a convex set .Note that the cap can be defined in any dimensional space. Given a , can be defined as the cap containing corresponding to a half-space parallel to with width times greater than that of the original.
In affine geometry, a cap set is a subset of the affine space (the -dimensional affine space over the three-element field) where no three elements sum to the zero vector. The cap set problem is the problem of finding the size of the largest possible cap set, as a function of n {\displaystyle n} . [ 1 ]
An illustration of Carathéodory's theorem for a square in R 2. Carathéodory's theorem in 2 dimensions states that we can construct a triangle consisting of points from P that encloses any point in the convex hull of P. For example, let P = {(0,0), (0,1), (1,0), (1,1)}. The convex hull of this set is a square.
A rectangular grid (top) and its image under a conformal map f (bottom). It is seen that f maps pairs of lines intersecting at 90° to pairs of curves still intersecting at 90°. A conformal map is a function which preserves angles locally. In the most common case the function has a domain and range in the complex plane. More formally, a map,
An example would be water running downhill—once it's run down, it will never come back up again. The lake that forms at the bottom of this river can, however, become well-mixed. The ergodic decomposition theorem states that every ergodic system can be split into two parts: the conservative part, and the dissipative part.