Search results
Results from the WOW.Com Content Network
Spectral graph theory emerged in the 1950s and 1960s. Besides graph theoretic research on the relationship between structural and spectral properties of graphs, another major source was research in quantum chemistry , but the connections between these two lines of work were not discovered until much later. [ 15 ]
Fan-Rong King Chung Graham (Chinese: 金芳蓉; pinyin: Jīn Fāngróng; born October 9, 1949), known professionally as Fan Chung, is a Taiwanese-born American mathematician who works mainly in the areas of spectral graph theory, extremal graph theory and random graphs, in particular in generalizing the Erdős–Rényi model for graphs with general degree distribution (including power-law ...
This is a list of graph theory topics, by Wikipedia page. See glossary of graph theory for basic terminology. ... Spectral graph theory; Spring-based algorithm;
This quantity is studied in the context of spectral graph theory. More precisely, let G be a graph with n vertices. It is assumed that G is a simple graph, that is, it does not contain loops or parallel edges. Let A be the adjacency matrix of G and let , =, …,, be the eigenvalues of A. Then the energy of the graph is defined as:
This type of mapping between graphs is the one that is most commonly used in category-theoretic approaches to graph theory. A proper graph coloring can equivalently be described as a homomorphism to a complete graph. 2. The homomorphism degree of a graph is a synonym for its Hadwiger number, the order of the largest clique minor. hyperarc
The name spectral theory was introduced by David Hilbert in his original formulation of Hilbert space theory, which was cast in terms of quadratic forms in infinitely many variables. The original spectral theorem was therefore conceived as a version of the theorem on principal axes of an ellipsoid , in an infinite-dimensional setting.
The study of spectra and related properties is known as spectral theory, which has numerous applications, most notably the mathematical formulation of quantum mechanics. The spectrum of an operator on a finite-dimensional vector space is precisely the set of eigenvalues. However an operator on an infinite-dimensional space may have additional ...
Analogously to the classical Fourier transform, the eigenvalues represent frequencies and eigenvectors form what is known as a graph Fourier basis. The Graph Fourier transform is important in spectral graph theory. It is widely applied in the recent study of graph structured learning algorithms, such as the widely employed convolutional networks.