Search results
Results from the WOW.Com Content Network
The volume (V) and surface area (S) of a toroid are given by the following equations, where r is the radius of the circular section, and R is the radius of the overall shape. V = 2 π 2 r 2 R {\displaystyle V=2\pi ^{2}r^{2}R}
Repeat steps two and three for each of the remaining smaller cubes, and continue to iterate ad infinitum. The second iteration gives a level-2 sponge, the third iteration gives a level-3 sponge, and so on. The Menger sponge itself is the limit of this process after an infinite number of iterations.
Packing circles in a square - closely related to spreading points in a unit square with the objective of finding the greatest minimal separation, d n, between points. To convert between these two formulations of the problem, the square side for unit circles will be L = 2 + 2 / d n {\displaystyle L=2+2/d_{n}} .
We obtain the distribution of the property i.e. a given two dimensional situation by writing discretized equations of the form of equation (3) at each grid node of the subdivided domain. At the boundaries where the temperature or fluxes are known the discretized equation are modified to incorporate the boundary conditions.
Its volume would be multiplied by the cube of 2 and become 8 m 3. The original cube (1 m sides) has a surface area to volume ratio of 6:1. The larger (2 m sides) cube has a surface area to volume ratio of (24/8) 3:1. As the dimensions increase, the volume will continue to grow faster than the surface area. Thus the square–cube law.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The volume of a container is generally understood to be the capacity of the container; i.e., the amount of fluid (gas or liquid) that the container could hold, rather than the amount of space the container itself displaces. By metonymy, the term "volume" sometimes is used to refer to the corresponding region (e.g., bounding volume). [2] [3]
The minimal enclosing box of the regular tetrahedron is a cube, with side length 1/ √ 2 that of the tetrahedron; for instance, a regular tetrahedron with side length √ 2 fits into a unit cube, with the tetrahedron's vertices lying at the vertices (0,0,0), (0,1,1), (1,0,1) and (1,1,0) of the unit cube.