enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Truth table - Wikipedia

    en.wikipedia.org/wiki/Truth_table

    In ordinary language terms, if both p and q are true, then the conjunction pq is true. For all other assignments of logical values to p and to q the conjunction pq is false. It can also be said that if p, then pq is q, otherwise pq is p.

  3. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    Now any rational root p/q corresponds to a factor of degree 1 in Q[X] of the polynomial, and its primitive representative is then qx − p, assuming that p and q are coprime. But any multiple in Z [ X ] of qx − p has leading term divisible by q and constant term divisible by p , which proves the statement.

  4. List of logic symbols - Wikipedia

    en.wikipedia.org/wiki/List_of_logic_symbols

    material conditional (material implication) implies, if P then Q, it is not the case that P and not Q propositional logic, Boolean algebra, Heyting algebra: is false when A is true and B is false but true otherwise.

  5. Truth value - Wikipedia

    en.wikipedia.org/wiki/Truth_value

    Logical biconditional becomes the equality binary relation, and negation becomes a bijection which permutes true and false. Conjunction and disjunction are dual with respect to negation, which is expressed by De Morgan's laws: ¬(pq) ⇔ ¬ p ∨ ¬ q ¬(pq) ⇔ ¬ p ∧ ¬ q. Propositional variables become variables in the Boolean ...

  6. Triviality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Triviality_(mathematics)

    Here, the proof follows immediately by virtue of the definition of material implication in which as the implication is true regardless of the truth value of the antecedent P if the consequent is fixed as true. [5] A related concept is a vacuous truth, where the antecedent P in a material implication PQ is false. [5]

  7. Propositional calculus - Wikipedia

    en.wikipedia.org/wiki/Propositional_calculus

    The propositional calculus [a] is a branch of logic. [1] It is also called propositional logic, [2] statement logic, [1] sentential calculus, [3] sentential logic, [1] or sometimes zeroth-order logic.

  8. Proof by contradiction - Wikipedia

    en.wikipedia.org/wiki/Proof_by_contradiction

    The proposition to be proved is P. We assume P to be false, i.e., we assume ¬P. It is then shown that ¬P implies falsehood. This is typically accomplished by deriving two mutually contradictory assertions, Q and ¬Q, and appealing to the law of noncontradiction. Since assuming P to be false leads to a contradiction, it is concluded that P is ...

  9. False (logic) - Wikipedia

    en.wikipedia.org/wiki/False_(logic)

    Because pp is usually a theorem or axiom, a consequence is that the negation of false (¬ ⊥) is true. A contradiction is the situation that arises when a statement that is assumed to be true is shown to entail false (i.e., φ ⊢ ⊥). Using the equivalence above, the fact that φ is a contradiction may be derived, for example, from ⊢ ...