Search results
Results from the WOW.Com Content Network
In ordinary language terms, if both p and q are true, then the conjunction p ∧ q is true. For all other assignments of logical values to p and to q the conjunction p ∧ q is false. It can also be said that if p, then p ∧ q is q, otherwise p ∧ q is p.
Now any rational root p/q corresponds to a factor of degree 1 in Q[X] of the polynomial, and its primitive representative is then qx − p, assuming that p and q are coprime. But any multiple in Z [ X ] of qx − p has leading term divisible by q and constant term divisible by p , which proves the statement.
material conditional (material implication) implies, if P then Q, it is not the case that P and not Q propositional logic, Boolean algebra, Heyting algebra: is false when A is true and B is false but true otherwise.
Logical biconditional becomes the equality binary relation, and negation becomes a bijection which permutes true and false. Conjunction and disjunction are dual with respect to negation, which is expressed by De Morgan's laws: ¬(p ∧ q) ⇔ ¬ p ∨ ¬ q ¬(p ∨ q) ⇔ ¬ p ∧ ¬ q. Propositional variables become variables in the Boolean ...
Here, the proof follows immediately by virtue of the definition of material implication in which as the implication is true regardless of the truth value of the antecedent P if the consequent is fixed as true. [5] A related concept is a vacuous truth, where the antecedent P in a material implication P→Q is false. [5]
The propositional calculus [a] is a branch of logic. [1] It is also called propositional logic, [2] statement logic, [1] sentential calculus, [3] sentential logic, [1] or sometimes zeroth-order logic.
The proposition to be proved is P. We assume P to be false, i.e., we assume ¬P. It is then shown that ¬P implies falsehood. This is typically accomplished by deriving two mutually contradictory assertions, Q and ¬Q, and appealing to the law of noncontradiction. Since assuming P to be false leads to a contradiction, it is concluded that P is ...
Because p → p is usually a theorem or axiom, a consequence is that the negation of false (¬ ⊥) is true. A contradiction is the situation that arises when a statement that is assumed to be true is shown to entail false (i.e., φ ⊢ ⊥). Using the equivalence above, the fact that φ is a contradiction may be derived, for example, from ⊢ ...