enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Truth table - Wikipedia

    en.wikipedia.org/wiki/Truth_table

    In ordinary language terms, if both p and q are true, then the conjunction pq is true. For all other assignments of logical values to p and to q the conjunction pq is false. It can also be said that if p, then pq is q, otherwise pq is p.

  3. List of logic symbols - Wikipedia

    en.wikipedia.org/wiki/List_of_logic_symbols

    material conditional (material implication) implies, if P then Q, it is not the case that P and not Q propositional logic, Boolean algebra, Heyting algebra: is false when A is true and B is false but true otherwise.

  4. Converse (logic) - Wikipedia

    en.wikipedia.org/wiki/Converse_(logic)

    The white area shows where the statement is false. Let S be a statement of the form P implies Q (PQ). Then the converse of S is the statement Q implies P (QP). In general, the truth of S says nothing about the truth of its converse, [2] unless the antecedent P and the consequent Q are logically equivalent.

  5. Necessity and sufficiency - Wikipedia

    en.wikipedia.org/wiki/Necessity_and_sufficiency

    The assertion that Q is necessary for P is colloquially equivalent to "P cannot be true unless Q is true" or "if Q is false, then P is false". [9] [1] By contraposition, this is the same thing as "whenever P is true, so is Q". The logical relation between P and Q is expressed as "if P, then Q" and denoted "PQ" (P implies Q).

  6. Truth value - Wikipedia

    en.wikipedia.org/wiki/Truth_value

    Logical biconditional becomes the equality binary relation, and negation becomes a bijection which permutes true and false. Conjunction and disjunction are dual with respect to negation, which is expressed by De Morgan's laws: ¬(pq) ⇔ ¬ p ∨ ¬ q ¬(pq) ⇔ ¬ p ∧ ¬ q. Propositional variables become variables in the Boolean ...

  7. Material implication (rule of inference) - Wikipedia

    en.wikipedia.org/wiki/Material_implication_(rule...

    The rule states that P implies Q is logically equivalent to not-or and that either form can replace the other in logical proofs. In other words, if P {\displaystyle P} is true, then Q {\displaystyle Q} must also be true, while if Q {\displaystyle Q} is not true, then P {\displaystyle P} cannot be true either; additionally, when P {\displaystyle ...

  8. Propositional formula - Wikipedia

    en.wikipedia.org/wiki/Propositional_formula

    The simplest case occurs when an OR formula becomes one its own inputs e.g. p = q. Begin with (p ∨ s) = q, then let p = q. Observe that q's "definition" depends on itself "q" as well as on "s" and the OR connective; this definition of q is thus impredicative. Either of two conditions can result: [24] oscillation or memory.

  9. If and only if - Wikipedia

    en.wikipedia.org/wiki/If_and_only_if

    In writing, phrases commonly used as alternatives to P "if and only if" Q include: Q is necessary and sufficient for P, for P it is necessary and sufficient that Q, P is equivalent (or materially equivalent) to Q (compare with material implication), P precisely if Q, P precisely (or exactly) when Q, P exactly in case Q, and P just in case Q. [3]