Search results
Results from the WOW.Com Content Network
This observation is useful in defining Brownian motion on an m-dimensional Riemannian manifold (M, g): a Brownian motion on M is defined to be a diffusion on M whose characteristic operator in local coordinates x i, 1 ≤ i ≤ m, is given by 1 / 2 Δ LB, where Δ LB is the Laplace–Beltrami operator given in local coordinates by ...
A single realization of a one-dimensional Wiener process A single realization of a three-dimensional Wiener process. In mathematics, the Wiener process is a real-valued continuous-time stochastic process named in honor of American mathematician Norbert Wiener for his investigations on the mathematical properties of the one-dimensional Brownian motion. [1]
The term “Brownian motor” was originally invented by Swiss theoretical physicist Peter Hänggi in 1995. [3] The Brownian motor, like the phenomenon of Brownian motion that underpinned its underlying theory, was also named after 19th century Scottish botanist Robert Brown, who, while looking through a microscope at pollen of the plant Clarkia pulchella immersed in water, famously described ...
Brownian motion, reflected Brownian motion and Ornstein–Uhlenbeck processes are examples of diffusion processes. It is used heavily in statistical physics, statistical analysis, information theory, data science, neural networks, finance and marketing.
For the simulation generating the realizations, see below. A geometric Brownian motion (GBM) (also known as exponential Brownian motion) is a continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion (also called a Wiener process) with drift. [1]
More formally, the reflection principle refers to a lemma concerning the distribution of the supremum of the Wiener process, or Brownian motion. The result relates the distribution of the supremum of Brownian motion up to time t to the distribution of the process at time t. It is a corollary of the strong Markov property of Brownian motion.
Fractional Brownian motion has stationary increments X(t) = B H (s+t) − B H (s) (the value is the same for any s). The increment process X(t) is known as fractional Gaussian noise. There is also a generalization of fractional Brownian motion: n-th order fractional Brownian motion, abbreviated as n-fBm.
In mathematics, the Dyson Brownian motion is a real-valued continuous-time stochastic process named for Freeman Dyson. [1] Dyson studied this process in the context of random matrix theory . There are several equivalent definitions: [ 2 ] [ 3 ]