enow.com Web Search

  1. Ads

    related to: linear algebra problem example

Search results

  1. Results from the WOW.Com Content Network
  2. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    However, some problems have distinct optimal solutions; for example, the problem of finding a feasible solution to a system of linear inequalities is a linear programming problem in which the objective function is the zero function (i.e., the constant function taking the value zero everywhere).

  3. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    A generalized eigenvalue problem (second sense) is the problem of finding a (nonzero) vector v that obeys = where A and B are matrices. If v obeys this equation, with some λ , then we call v the generalized eigenvector of A and B (in the second sense), and λ is called the generalized eigenvalue of A and B (in the second sense) which ...

  4. Linear algebra - Wikipedia

    en.wikipedia.org/wiki/Linear_algebra

    With respect to general linear maps, linear endomorphisms and square matrices have some specific properties that make their study an important part of linear algebra, which is used in many parts of mathematics, including geometric transformations, coordinate changes, quadratic forms, and many other part of mathematics.

  5. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    In linear algebra, the singular value decomposition (SVD) is a factorization of a real or complex matrix into a rotation, followed by a rescaling followed by another rotation. It generalizes the eigendecomposition of a square normal matrix with an orthonormal eigenbasis to any ⁠ m × n {\displaystyle m\times n} ⁠ matrix.

  6. QR decomposition - Wikipedia

    en.wikipedia.org/wiki/QR_decomposition

    After some algebra, it can be shown that a solution to the inverse problem can be expressed as: = [()] where one may either find by Gaussian elimination or compute () directly by forward substitution. The latter technique enjoys greater numerical accuracy and lower computations.

  7. Invariant subspace - Wikipedia

    en.wikipedia.org/wiki/Invariant_subspace

    The problem is to decide whether every such T has a non-trivial, closed, invariant subspace. It is unsolved. In the more general case where V is assumed to be a Banach space, Per Enflo (1976) found an example of an operator without an invariant subspace. A concrete example of an operator without an invariant subspace was produced in 1985 by ...

  1. Ads

    related to: linear algebra problem example