Search results
Results from the WOW.Com Content Network
Set theory is used to introduce students to logical operators (NOT, AND, OR), and semantic or rule description (technically intensional definition [30]) of sets (e.g. "months starting with the letter A"), which may be useful when learning computer programming, since Boolean logic is used in various programming languages.
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
It is the algebra of the set-theoretic operations of union, intersection and complementation, and the relations of equality and inclusion. For a basic introduction to sets see the article on sets, for a fuller account see naive set theory, and for a full rigorous axiomatic treatment see axiomatic set theory.
Von Neumann–Bernays–Gödel set theory (NBG) is a commonly used conservative extension of Zermelo–Fraenkel set theory that does allow explicit treatment of proper classes. There are many equivalent formulations of the axioms of Zermelo–Fraenkel set theory. Most of the axioms state the existence of particular sets defined from other sets.
In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection. [1] It is one of the fundamental operations through which sets can be combined and related to each other. A nullary union refers to a union of zero ( ) sets and it is by definition equal to the empty set.
Naive set theory is any of several theories of sets used in the discussion of the foundations of mathematics. [3] Unlike axiomatic set theories, which are defined using formal logic, naive set theory is defined informally, in natural language.
If the set B is the union of the suits of clubs and diamonds, then the complement of B is the union of the suits of hearts and spades. When the universe is the universe of sets described in formalized set theory, the absolute complement of a set is generally not itself a set, but rather a proper class. For more info, see universal set.
Pocket set theory; Positive set theory; S (Boolos 1989) Scott–Potter set theory; Tarski–Grothendieck set theory; Von Neumann–Bernays–Gödel set theory; Zermelo–Fraenkel set theory; Zermelo set theory; Set (mathematics) Set-builder notation; Set-theoretic topology; Simple theorems in the algebra of sets; Subset; Θ (set theory) Tree ...