Search results
Results from the WOW.Com Content Network
In astronomy, the rotation period or spin period [1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars (inertial space).
It can also be formulated as the instantaneous rate of change of the number of rotations, N, with respect to time, t: n=dN/dt (as per International System of Quantities). [4] Similar to ordinary period, the reciprocal of rotational frequency is the rotation period or period of rotation, T=ν −1 =n −1, with dimension of time (SI unit seconds).
Sidereal time is a "time scale that is based on Earth's rate of rotation measured relative to the fixed stars". [ 1 ] Viewed from the same location , a star seen at one position in the sky will be seen at the same position on another night at the same time of day (or night), if the day is defined as a sidereal day (also known as the sidereal ...
The procedure for calculating the heliocentric polar coordinates (r,θ) of a planet as a function of the time t since perihelion, is the following five steps: Compute the mean motion n = (2π rad)/P, where P is the period. Compute the mean anomaly M = nt, where t is the time since perihelion.
Earth's rotation period relative to the International Celestial Reference Frame, called its stellar day by the International Earth Rotation and Reference Systems Service (IERS), is 86 164.098 903 691 seconds of mean solar time (UT1) (23 h 56 m 4.098 903 691 s, 0.997 269 663 237 16 mean solar days).
At the equator, the solar rotation period is 24.47 days. This is called the sidereal rotation period, and should not be confused with the synodic rotation period of 26.24 days, which is the time for a fixed feature on the Sun to rotate to the same apparent position as viewed from Earth (the Earth's orbital rotation is in the same direction as the Sun's rotation).
The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy , it usually applies to planets or asteroids orbiting the Sun , moons orbiting planets, exoplanets orbiting other stars , or binary stars .
The ancient Greek astronomer Hipparchus noted the apsidal precession of the Moon's orbit (as the revolution of the Moon's apogee with a period of approximately 8.85 years); [4] it is corrected for in the Antikythera Mechanism (circa 80 BCE) (with the supposed value of 8.88 years per full cycle, correct to within 0.34% of current measurements). [5]