enow.com Web Search

  1. Ads

    related to: how to calculate water flow through pipe

Search results

  1. Results from the WOW.Com Content Network
  2. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    The Hazen–Williams equation is an empirical relationship which relates the flow of water in a pipe with the physical properties of the pipe and the pressure drop caused by friction. It is used in the design of water pipe systems [ 1 ] such as fire sprinkler systems , [ 2 ] water supply networks , and irrigation systems.

  3. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    In laminar flow, friction loss arises from the transfer of momentum from the fluid in the center of the flow to the pipe wall via the viscosity of the fluid; no vortices are present in the flow. Note that the friction loss is insensitive to the pipe roughness height ε: the flow velocity in the neighborhood of the pipe wall is zero.

  4. Pipe network analysis - Wikipedia

    en.wikipedia.org/wiki/Pipe_network_analysis

    In fluid dynamics, pipe network analysis is the analysis of the fluid flow through a hydraulics network, containing several or many interconnected branches. The aim is to determine the flow rates and pressure drops in the individual sections of the network. This is a common problem in hydraulic design.

  5. Darcy friction factor formulae - Wikipedia

    en.wikipedia.org/wiki/Darcy_friction_factor_formulae

    The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density. The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe ...

  6. Flow distribution in manifolds - Wikipedia

    en.wikipedia.org/wiki/Flow_distribution_in_manifolds

    Thus the flow rate of the straight pipe is greater than that of the vertical one. Furthermore, because the lower energy fluid in the boundary layer branches through the channels the higher energy fluid in the pipe centre remains in the pipe as shown in Fig. 4. Fig. 4. Velocity profile along a manifold

  7. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    The laminar flow through a pipe of uniform (circular) cross-section is known as Hagen–Poiseuille flow. The equations governing the Hagen–Poiseuille flow can be derived directly from the Navier–Stokes momentum equations in 3D cylindrical coordinates ( r , θ , x ) by making the following set of assumptions:

  8. Hardy Cross method - Wikipedia

    en.wikipedia.org/wiki/Hardy_Cross_method

    The Hardy Cross method can be used to calculate the flow distribution in a pipe network. Consider the example of a simple pipe flow network shown at the right. For this example, the in and out flows will be 10 liters per second. We will consider n to be 2, and the head loss per unit flow r, and initial flow guess for each pipe as follows:

  9. Manning formula - Wikipedia

    en.wikipedia.org/wiki/Manning_formula

    Sewers are often constructed as circular pipes. It has long been accepted that the value of n varies with the flow depth in partially filled circular pipes. [9] A complete set of explicit equations that can be used to calculate the depth of flow and other unknown variables when applying the Manning equation to circular pipes is available. [10]

  1. Ads

    related to: how to calculate water flow through pipe