Search results
Results from the WOW.Com Content Network
Lectins, or proteins that bind carbohydrates, can recognize specific oligosaccharides and provide useful information for cell recognition based on oligosaccharide binding. [citation needed] An important example of oligosaccharide cell recognition is the role of glycolipids in determining blood types.
An oligosaccharide has both a reducing and a non-reducing end. The reducing end of an oligosaccharide is the monosaccharide residue with hemiacetal functionality, thereby capable of reducing the Tollens’ reagent, while the non-reducing end is the monosaccharide residue in acetal form, thus incapable of reducing the Tollens’ reagent. [2]
Two different classes of fructooligosaccharide (FOS) mixtures are produced commercially, based on inulin degradation or transfructosylation processes.. FOS can be produced by degradation of inulin, or polyfructose, a polymer of D-fructose residues linked by β(2→1) bonds with a terminal α(1→2) linked D-glucose.
An oligosaccharide (shown in grey) bound in the binding site of a plant lectin (Griffonia simplicifolia isolectin IV in complex with the Lewis b blood group determinant); only a part of the oligosaccharide (central, in grey) is shown for clarity.
An oligosaccharide is an oligomer of monosaccharides (simple sugars). An oligonucleotide is a short single-stranded fragment of nucleic acid such as DNA or RNA, or similar fragments of analogs of nucleic acids such as peptide nucleic acid or Morpholinos. A pentamer unit of the major capsid protein VP1. Each monomer is in a different color.
Structural formula of inulins, linear fructans with a terminal α-D-glucose with 1→2 linkage. A fructan is a polymer of fructose molecules. Fructans with a short chain length are known as fructooligosaccharides.
The composition of the galactooligosaccharide fraction varies in chain length and type of linkage between the monomer units. Galactooligosaccharides are produced through the enzymatic conversion of lactose, a component of bovine milk.
Core-OS Structure and Metabolic Pathways: oligosaccharide from Escherichia coli R1. [1] Inner core is represented in green and outer core is represented in blue. The core domain always contains an oligosaccharide component which attaches directly to lipid A and commonly contains sugars such as heptose and 3-deoxy-D-mannooctulosonic acid (also known as KDO or keto-deoxyoctulosonate). [2]