Search results
Results from the WOW.Com Content Network
If the resulting p-value of Levene's test is less than some significance level (typically 0.05), the obtained differences in sample variances are unlikely to have occurred based on random sampling from a population with equal variances. Thus, the null hypothesis of equal variances is rejected and it is concluded that there is a difference ...
After analyzing the data, if the p-value is less than α, that is taken to mean that the observed data is sufficiently inconsistent with the null hypothesis for the null hypothesis to be rejected. However, that does not prove that the null hypothesis is false. The p-value does not, in itself, establish probabilities of hypotheses. Rather, it is ...
The solution to this question would be to report the p-value or significance level α of the statistic. For example, if the p-value of a test statistic result is estimated at 0.0596, then there is a probability of 5.96% that we falsely reject H 0.
A hypothesis is rejected at level α if and only if its adjusted p-value is less than α. In the earlier example using equal weights, the adjusted p-values are 0.03, 0.06, 0.06, and 0.02. This is another way to see that using α = 0.05, only hypotheses one and four are rejected by this procedure.
A p-value less than 0.05 for one or more of these three hypotheses leads to their rejection. As with many other non-parametric methods, the analysis in this method relies on the evaluation of the ranks of the samples in the samples rather than the actual observations. Modifications also allow extending the test to examine more than two factors.
A two-tailed test may still be used but it will be less powerful than a one-tailed test, because the rejection region for a one-tailed test is concentrated on one end of the null distribution and is twice the size (5% vs. 2.5%) of each rejection region for a two-tailed test. As a result, the null hypothesis can be rejected with a less extreme ...
The p-values of the rejected null hypothesis (i.e. declared discoveries) are colored in red. Note that there are rejected p-values which are above the rejection line (in blue) since all null hypothesis of p-values which are ranked before the p-value of the last intersection are rejected. The approximations MFDR = 0.02625 and AFDR = 0.00730, here.
The p-value is the probability that a test statistic which is at least as extreme as the one obtained would occur under the null hypothesis. At a significance level of 0.05, a fair coin would be expected to (incorrectly) reject the null hypothesis (that it is fair) in 1 out of 20 tests on average.