enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dimensional analysis - Wikipedia

    en.wikipedia.org/wiki/Dimensional_analysis

    In engineering and science, dimensional analysis is the analysis of the relationships between different physical quantities by identifying their base quantities (such as length, mass, time, and electric current) and units of measurement (such as metres and grams) and tracking these dimensions as calculations or comparisons are performed.

  3. Buckingham π theorem - Wikipedia

    en.wikipedia.org/wiki/Buckingham_π_theorem

    Although named for Edgar Buckingham, the π theorem was first proved by the French mathematician Joseph Bertrand in 1878. [1] Bertrand considered only special cases of problems from electrodynamics and heat conduction, but his article contains, in distinct terms, all the basic ideas of the modern proof of the theorem and clearly indicates the theorem's utility for modelling physical phenomena.

  4. Finite element method - Wikipedia

    en.wikipedia.org/wiki/Finite_element_method

    The problem P1 can be solved directly by computing antiderivatives. However, this method of solving the boundary value problem (BVP) works only when there is one spatial dimension. It does not generalize to higher-dimensional problems or problems like + ″ =. For this reason, we will develop the finite element method for P1 and outline its ...

  5. Fermi problem - Wikipedia

    en.wikipedia.org/wiki/Fermi_problem

    A Fermi problem (or Fermi quiz, Fermi question, Fermi estimate), also known as an order-of-magnitude problem (or order-of-magnitude estimate, order estimation), is an estimation problem in physics or engineering education, designed to teach dimensional analysis or approximation of extreme scientific calculations.

  6. List of physical quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_quantities

    Three dimensional extent of an object m 3: L 3: extensive, scalar Volumetric flow rate: Q: Rate of change of volume with respect to time m 3 ⋅s −1: L 3 T −1: extensive, scalar Wavelength: λ: Perpendicular distance between repeating units of a wave m L: Wavenumber: k: Repetency or spatial frequency: the number of cycles per unit distance ...

  7. Analytic geometry - Wikipedia

    en.wikipedia.org/wiki/Analytic_geometry

    A quadric, or quadric surface, is a 2-dimensional surface in 3-dimensional space defined as the locus of zeros of a quadratic polynomial. In coordinates x 1, x 2,x 3, the general quadric is defined by the algebraic equation [21], = + = + =

  8. Non-dimensionalization and scaling of the Navier–Stokes ...

    en.wikipedia.org/wiki/Non-dimensionalization_and...

    This technique can ease the analysis of the problem at hand, and reduce the number of free parameters. Small or large sizes of certain dimensionless parameters indicate the importance of certain terms in the equations for the studied flow. This may provide possibilities to neglect terms in (certain areas of) the considered flow.

  9. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Danskin's theorem — used in the analysis of minimax problems; Maximum theorem — the maximum and maximizer are continuous as function of parameters, under some conditions; No free lunch in search and optimization; Relaxation (approximation) — approximating a given problem by an easier problem by relaxing some constraints Lagrangian relaxation