Search results
Results from the WOW.Com Content Network
A simple application of dimensional analysis to mathematics is in computing the form of the volume of an n-ball (the solid ball in n dimensions), or the area of its surface, the n-sphere: being an n-dimensional figure, the volume scales as x n, while the surface area, being (n − 1)-dimensional, scales as x n−1.
chemistry (ratio of activation energy to thermal energy) [1] Atomic weight: M: chemistry (mass of one atom divided by the atomic mass constant, 1 Da) Bodenstein number: Bo or Bd = / = chemistry (residence-time distribution; similar to the axial mass transfer Peclet number) [2]
Although named for Edgar Buckingham, the π theorem was first proved by the French mathematician Joseph Bertrand in 1878. [1] Bertrand considered only special cases of problems from electrodynamics and heat conduction, but his article contains, in distinct terms, all the basic ideas of the modern proof of the theorem and clearly indicates the theorem's utility for modelling physical phenomena.
A Fermi problem (or Fermi quiz, Fermi question, Fermi estimate), also known as an order-of-magnitude problem (or order-of-magnitude estimate, order estimation), is an estimation problem in physics or engineering education, designed to teach dimensional analysis or approximation of extreme scientific calculations.
Quantities having dimension one, dimensionless quantities, regularly occur in sciences, and are formally treated within the field of dimensional analysis.In the 19th century, French mathematician Joseph Fourier and Scottish physicist James Clerk Maxwell led significant developments in the modern concepts of dimension and unit.
Three dimensional extent of an object m 3: L 3: extensive, scalar Volumetric flow rate: Q: Rate of change of volume with respect to time m 3 ⋅s −1: L 3 T −1: extensive, scalar Wavelength: λ: Perpendicular distance between repeating units of a wave m L: Wavenumber: k: Repetency or spatial frequency: the number of cycles per unit distance ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
This technique can ease the analysis of the problem at hand, and reduce the number of free parameters. Small or large sizes of certain dimensionless parameters indicate the importance of certain terms in the equations for the studied flow. This may provide possibilities to neglect terms in (certain areas of) the considered flow.