enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stationary process - Wikipedia

    en.wikipedia.org/wiki/Stationary_process

    An example of a discrete-time stationary process where the sample space is also discrete (so that the random variable may take one of N possible values) is a Bernoulli scheme. Other examples of a discrete-time stationary process with continuous sample space include some autoregressive and moving average processes which are both subsets of the ...

  3. Trend-stationary process - Wikipedia

    en.wikipedia.org/wiki/Trend-stationary_process

    In both unit root and trend-stationary processes, the mean can be growing or decreasing over time; however, in the presence of a shock, trend-stationary processes are mean-reverting (i.e. transitory, the time series will converge again towards the growing mean, which was not affected by the shock) while unit-root processes have a permanent ...

  4. Time series - Wikipedia

    en.wikipedia.org/wiki/Time_series

    Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. Time series forecasting is the use of a model to predict future values based on previously observed values.

  5. Autoregressive moving-average model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_moving...

    The CRAN task view on Time Series contains links to most of these. Mathematica has a complete library of time series functions including ARMA. [11] MATLAB includes functions such as arma, ar and arx to estimate autoregressive, exogenous autoregressive and ARMAX models. See System Identification Toolbox and Econometrics Toolbox for details.

  6. Autoregressive integrated moving average - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_integrated...

    According to Wold's decomposition theorem, [4] [5] [6] the ARMA model is sufficient to describe a regular (a.k.a. purely nondeterministic [6]) wide-sense stationary time series, so we are motivated to make such a non-stationary time series stationary, e.g., by using differencing, before we can use ARMA. [7]

  7. Moving-average model - Wikipedia

    en.wikipedia.org/wiki/Moving-average_model

    In time series analysis, the moving-average model (MA model), also known as moving-average process, is a common approach for modeling univariate time series. [1] [2] The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable.

  8. Unit root - Wikipedia

    en.wikipedia.org/wiki/Unit_root

    In both unit root and trend-stationary processes, the mean can be growing or decreasing over time; however, in the presence of a shock, trend-stationary processes are mean-reverting (i.e. transitory, the time series will converge again towards the growing mean, which was not affected by the shock) while unit-root processes have a permanent ...

  9. Trend periodic nonstationary processes - Wikipedia

    en.wikipedia.org/wiki/Trend_periodic_non...

    where x(t) is the time series data, T is the period of the trend, is the mean of the series, and are the Fourier coefficients, and k is the harmonic number. Another way to represent trend periodic stationary processes is by using a regression model with a sine and cosine function, such as: