Search results
Results from the WOW.Com Content Network
While even-hole-free graphs can be recognized in polynomial time, it is NP-complete to determine whether a graph contains an even hole that includes a specific vertex. [ 3 ] It is unknown whether graph coloring and the maximum independent set problem can be solved in polynomial time on even-hole-free graphs, or whether they are NP-complete.
In algebraic topology and graph theory, graph homology describes the homology groups of a graph, where the graph is considered as a topological space. It formalizes the idea of the number of "holes" in the graph. It is a special case of a simplicial homology, as a graph is a special case of a simplicial complex. Since a finite graph is a 1 ...
The even-hole-free graphs are the graphs containing no induced cycles with an even number of vertices. The trivially perfect graphs are the graphs that have neither an induced path of length three nor an induced cycle of length four. By the strong perfect graph theorem, the perfect graphs are the graphs with no odd hole and no odd antihole.
An anti-hole is an induced subgraph of order four whose complement is a cycle; equivalently, it is a hole in the complement graph. This terminology is mainly used in the context of perfect graphs, which are characterized by the strong perfect graph theorem as being the graphs with no odd holes or odd anti-holes. The hole-free graphs are the ...
A chordal graph, a special type of perfect graph, has no holes of any size greater than three. The girth of a graph is the length of its shortest cycle; this cycle is necessarily chordless. Cages are defined as the smallest regular graphs with given combinations of degree and girth.
Chordal graphs are precisely the graphs that are both odd-hole-free and even-hole-free (see holes in graph theory). Every chordal graph is a strangulated graph , a graph in which every peripheral cycle is a triangle, because peripheral cycles are a special case of induced cycles.
The graph of the 3-3 duoprism (the line graph of ,) is perfect.Here it is colored with three colors, with one of its 3-vertex maximum cliques highlighted. In graph theory, a perfect graph is a graph in which the chromatic number equals the size of the maximum clique, both in the graph itself and in every induced subgraph.
In layman's terms, the genus is the number of "holes" an object has ("holes" interpreted in the sense of doughnut holes; a hollow sphere would be considered as having zero holes in this sense). [3] A torus has 1 such hole, while a sphere has 0. The green surface pictured above has 2 holes of the relevant sort. For instance: