enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kernel (image processing) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(image_processing)

    2D convolution with an M × N kernel requires M × N multiplications for each sample (pixel). If the kernel is separable, then the computation can be reduced to M + N multiplications. Using separable convolutions can significantly decrease the computation by doing 1D convolution twice instead of one 2D convolution. [2]

  3. System-level simulation - Wikipedia

    en.wikipedia.org/wiki/System-level_simulation

    It is common in SLS to use 0D —sometimes 1D— equations to model physical phenomena with space variables, instead of 2D or 3D equations. The reason for such a choice is the size of the simulated systems, which is generally too large (i.e. too many elements and/or too large space extension) for the simulation to be computationally tractable.

  4. Multidimensional discrete convolution - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_discrete...

    This ensures that a two-dimensional convolution will be able to be performed by a one-dimensional convolution operator as the 2D filter has been unwound to a 1D filter with gaps of zeroes separating the filter coefficients. One-Dimensional Filtering Strip after being Unwound. Assuming that some-low pass two-dimensional filter was used, such as:

  5. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    1D convolutional neural network feed forward example Although fully connected feedforward neural networks can be used to learn features and classify data, this architecture is generally impractical for larger inputs (e.g., high-resolution images), which would require massive numbers of neurons because each pixel is a relevant input feature.

  6. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    Some features of convolution are similar to cross-correlation: for real-valued functions, of a continuous or discrete variable, convolution () differs from cross-correlation only in that either () or () is reflected about the y-axis in convolution; thus it is a cross-correlation of () and (), or () and ().

  7. Gabor filter - Wikipedia

    en.wikipedia.org/wiki/Gabor_filter

    Its impulse response is defined by a sinusoidal wave (a plane wave for 2D Gabor filters) multiplied by a Gaussian function. [6] Because of the multiplication-convolution property (Convolution theorem), the Fourier transform of a Gabor filter's impulse response is the convolution of the Fourier transform of the harmonic function (sinusoidal function) and the Fourier transform of the Gaussian ...

  8. Deconvolution - Wikipedia

    en.wikipedia.org/wiki/Deconvolution

    In mathematics, deconvolution is the inverse of convolution. Both operations are used in signal processing and image processing. For example, it may be possible to recover the original signal after a filter (convolution) by using a deconvolution method with a certain degree of accuracy. [1]

  9. Iterative Stencil Loops - Wikipedia

    en.wikipedia.org/wiki/Iterative_Stencil_Loops

    The shape of the neighborhood used during the updates depends on the application itself. The most common stencils are the 2D or 3D versions of the von Neumann neighborhood and Moore neighborhood. The example above uses a 2D von Neumann stencil while LBM codes generally use its 3D variant. Conway's Game of Life uses the 2D