Search results
Results from the WOW.Com Content Network
Quite often, textbook problems will treat the population standard deviation as if it were known and thereby avoid the need to use the Student's t distribution. These problems are generally of two kinds: (1) those in which the sample size is so large that one may treat a data-based estimate of the variance as if it were certain, and (2) those ...
Once the t value and degrees of freedom are determined, a p-value can be found using a table of values from Student's t-distribution. If the calculated p -value is below the threshold chosen for statistical significance (usually the 0.10, the 0.05, or 0.01 level), then the null hypothesis is rejected in favor of the alternative hypothesis.
One common method of construction of a multivariate t-distribution, for the case of dimensions, is based on the observation that if and are independent and distributed as (,) and (i.e. multivariate normal and chi-squared distributions) respectively, the matrix is a p × p matrix, and is a constant vector then the random variable = / / + has the density [1]
The noncentral t-distribution generalizes Student's t-distribution using a noncentrality parameter.Whereas the central probability distribution describes how a test statistic t is distributed when the difference tested is null, the noncentral distribution describes how t is distributed when the null is false.
In the same volume Fisher contributed applications of Student's t-distribution to regression analysis. [3] Although introduced by others, Studentized residuals are named in Student's honour because, like the problem that led to Student's t-distribution, the idea of adjusting for estimated standard deviations is central to that concept. [7]
In statistics, particularly in hypothesis testing, the Hotelling's T-squared distribution (T 2), proposed by Harold Hotelling, [1] is a multivariate probability distribution that is tightly related to the F-distribution and is most notable for arising as the distribution of a set of sample statistics that are natural generalizations of the statistics underlying the Student's t-distribution.
The square of a standard normal random variable has a chi-squared distribution with one degree of freedom. If X is a Student’s t random variable with ν degree of freedom, then X 2 is an F (1,ν) random variable. If X is a double exponential random variable with mean 0 and scale λ, then |X| is an exponential random variable with mean λ.
where t is a random variable distributed as Student's t-distribution with ν − 1 degrees of freedom. In fact, this implies that t i 2 /ν follows the beta distribution B(1/2,(ν − 1)/2). The distribution above is sometimes referred to as the tau distribution; [2] it was first derived by Thompson in 1935. [3]