enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    That is, the Taylor series diverges at x if the distance between x and b is larger than the radius of convergence. The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions ...

  3. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  4. Machin-like formula - Wikipedia

    en.wikipedia.org/wiki/Machin-like_formula

    Let be the amount of time spent on each digit (for each term in the Taylor series). The Taylor series will converge when: (()) = Thus: = ⁡ ⁡ For the first term in the Taylor series, all digits must be processed. In the last term of the Taylor series, however, there's only one digit remaining to be processed.

  5. Difference engine - Wikipedia

    en.wikipedia.org/wiki/Difference_engine

    The Taylor series expresses the function as a sum obtained from its derivatives at one point. For many functions the higher derivatives are trivial to obtain; for instance, the sine function at 0 has values of 0 or for all derivatives. Setting 0 as the start of computation we get the simplified Maclaurin series = ()!

  6. Radius of convergence - Wikipedia

    en.wikipedia.org/wiki/Radius_of_convergence

    Two cases arise: The first case is theoretical: when you know all the coefficients then you take certain limits and find the precise radius of convergence.; The second case is practical: when you construct a power series solution of a difficult problem you typically will only know a finite number of terms in a power series, anywhere from a couple of terms to a hundred terms.

  7. Calculator input methods - Wikipedia

    en.wikipedia.org/wiki/Calculator_input_methods

    Software calculators that simulate hand-held, immediate execution calculators do not use the full power of the computer: "A computer is a far more powerful device than a hand-held calculator, and thus it is illogical and limiting to duplicate hand-held calculators on a computer."

  8. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    The simplest method is to use finite difference approximations. A simple two-point estimation is to compute the slope of a nearby secant line through the points (x, f(x)) and (x + h, f(x + h)). [1] Choosing a small number h, h represents a small change in x, and it can be either positive or negative.

  9. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    The Taylor series of f converges uniformly to the zero function T f (x) = 0, which is analytic with all coefficients equal to zero. The function f is unequal to this Taylor series, and hence non-analytic. For any order k ∈ N and radius r > 0 there exists M k,r > 0 satisfying the remainder bound above.