Search results
Results from the WOW.Com Content Network
The QLattice works with data in categorical and numeric format. It allows the user to quickly generate, plot and inspect mathematical formulae that can potentially explain the generating process of the data. It is designed for easy interaction with the researcher, allowing the user to guide the search based on their preexisting knowledge. [2] [6]
statsmodels – Python package for statistics and econometrics (regression, plotting, hypothesis testing, generalized linear model (GLM), time series analysis, autoregressive–moving-average model (ARMA), vector autoregression (VAR), non-parametric statistics, ANOVA) Statistical Lab – R-based and focusing on educational purposes
Product One-way Two-way MANOVA GLM Mixed model Post-hoc Latin squares; ADaMSoft: Yes Yes No No No No No Alteryx: Yes Yes Yes Yes Yes Analyse-it: Yes Yes No
It is an open-source cross-platform integrated development environment (IDE) for scientific programming in the Python language.Spyder integrates with a number of prominent packages in the scientific Python stack, including NumPy, SciPy, Matplotlib, pandas, IPython, SymPy and Cython, as well as other open-source software.
Eureqa, evolutionary symbolic regression software (commercial), and software library; TuringBot, symbolic regression software based on simulated annealing (commercial) PySR, [20] symbolic regression environment written in Python and Julia, using regularized evolution, simulated annealing, and gradient-free optimization (free, open source) [21]
In addition, the Python extension allows SPSS to run any of the statistics in the free software package R. From version 14 onwards, SPSS can be driven externally by a Python or a VB.NET program using supplied "plug-ins". (From version 20 onwards, these two scripting facilities, as well as many scripts, are included on the installation media and ...
Where to shop today's best deals: Kate Spade, Amazon, Walmart and more
In statistics, multivariate adaptive regression splines (MARS) is a form of regression analysis introduced by Jerome H. Friedman in 1991. [1] It is a non-parametric regression technique and can be seen as an extension of linear models that automatically models nonlinearities and interactions between variables.