Search results
Results from the WOW.Com Content Network
In physics, interference is a phenomenon in which two coherent waves are combined by adding their intensities or displacements with due consideration for their phase difference. The resultant wave may have greater intensity ( constructive interference ) or lower amplitude ( destructive interference ) if the two waves are in phase or out of ...
The interferometric visibility (also known as interference visibility and fringe visibility, or just visibility when in context) is a measure of the contrast of interference in any system subject to wave superposition. Examples include as optics, quantum mechanics, water waves, sound waves, or electrical signals.
In acoustical engineering, the Campbell diagram would represent the pressure spectrum waterfall plot vs the machine's shaft rotation speed (sometimes also called 3D noise map). References [ edit ]
In physics, coherence length is the propagation distance over which a coherent wave (e.g. an electromagnetic wave) maintains a specified degree of coherence. Wave interference is strong when the paths taken by all of the interfering waves differ by less than the coherence length. A wave with a longer coherence length is closer to a perfect ...
As the delay is changed by half a period, the interference switches between constructive and destructive. The black lines indicate the interference envelope, which gives the degree of coherence. Although the waves in Figures 2 and 3 have different time durations, they have the same coherence time.
The Sagnac effect, also called Sagnac interference, named after French physicist Georges Sagnac, is a phenomenon encountered in interferometry that is elicited by rotation. The Sagnac effect manifests itself in a setup called a ring interferometer or Sagnac interferometer .
EIT is based on the destructive interference of the transition probability amplitude between atomic states. Closely related to EIT are coherent population trapping (CPT) phenomena. The quantum interference in EIT can be exploited to laser cool atomic particles, even down to the quantum mechanical ground state of motion. [2]
In solid-state physics, a quantum sensor is a quantum device that responds to a stimulus. Usually this refers to a sensor, which has quantized energy levels, uses quantum coherence or entanglement to improve measurements beyond what can be done with classical sensors. [4] There are four criteria for solid-state quantum sensors: [4]